
* Dissemination Level: PU= Public, RE= Restricted to a group specified by the Consortium, PP= Restricted to other

program participants (including the Commission services), CO= Confidential, only for

members of the Consortium (including the Commission services)

** Nature of the Deliverable: P= Prototype, R= Report, S= Specification, T= Tool, O= Other

D2.3 Refined Distributed System Architecture

Dissemination Level: PU

Nature of the Deliverable: R

Date: 05/03/2020

Distribution: Internal

Editors: UTP

Contributors: UTP, Thales, ESF, QWANT, Z&P, TECOMS, ICCS,

LSBU

Dissemination Level: CO

Funded by the Horizon 2020 Framework

Programme of the European Union

SocialTruth - Grant Agreement 825477

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 2 of 46

Disclaimer

This document contains material which is copyright of certain SocialTruth consortium parties. All

SocialTruth consortium parties have agreed to the full publication of this document.

Neither the SocialTruth consortium as a whole, nor any certain party of the SocialTruth consortium

warrants that the information contained in this document is capable of use, or that use of the

information is free from risk, and accepts no liability for loss or damage suffered by any person using

the information.

The contents of this document are the sole responsibility of the SocialTruth consortium and can in

no way be taken to reflect the views of the European Commission. The European Commission is not

responsible for any use that may be made of the information it contains.

The commercial use of any information contained in this document requires a license from the

proprietor of that information. For information and permission requests, contact the SocialTruth

project coordinator Dr. Konstantinos Demestichas (ICCS) at cdemest@cn.ntua.gr.

The content of this document may be freely distributed, reproduced or copied as content in the

public domain, for non-commercial purposes, at the following conditions:

it is requested that in any subsequent use of this work the SocialTruth project is given appropriate

acknowledgement with the following suggested citation:

“Deliverable 2.3 Refined Distributed System Architecture (2020)” produced under the SocialTruth

project, which has received funding from the European Union’s Horizon2020 Programme for

research and innovation under grant agreement No.724087. Available at:

http://www.socialtruth.eu“

a) this document may contain material, information, text, and/or images created and/or prepared by

individuals or institutions external to the Socialtruth consortium, that may be protected by

copyright. These sources are mentioned in the “References” section, in captions and in footnotes.

Users must seek permission from the copyright owner(s) to use this material.

mailto:cdemest@cn.ntua.gr
http://www.socialtruth.eu/

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 3 of 46

Revision History

Date Rev. Description Partner

01/01/2020 1.0 Initial Version UTP

10/02/2020 1.1 Contribution by Z&P Z&P

17/02/2020 1.2 Contribution by Qwant Qwant

18/02/2020 1.3 Contribution by ESF ESF

19/02/2020 1.4 Contribution by THALES THALES

20/02/2020 1.5 Document refinement and integration of partners

contribution

UTP

21/02/2020 1.6 Document refinement after internal review UTP

23/02/2020 1.7 Additions by TECOMS. New subsections by UTP. UTP

25/02/2020 1.8 Additions by ICCS, document finalization UTP, ICCS

27/02/2020 1.9 Pre-final version UTP

13/03/2020 1.10 Review and alignment with D2.1 based on 1st review

recommendations

UTP

23/03/2020 1.11 Adaptations based on partners feedback UTP

27/03/2020 1.12 Peer review and Pre-final version v.2 UTP

02/04/2020 1.13 Final version UTP

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 4 of 46

List of Authors

Partner Author

UTP Michał Choraś, Rafał Kozik, Marek Pawlicki, Krzysztof Samp, Paweł Ksieniewicz,

Michał Woźniak, Rafał Renk

TECOMS Guido Villa

Z&P Giulia Venturi, Alessandro Zanasi, Davide Mauro Ferrario

ESF Nahid Oulmi

QWANT Stan Assier

THALES Romain Ferrari

LSBU Chathura Galkandage

ICCS George Koutalieris

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 5 of 46

Table of Contents
Revision History .. 2

List of Authors ... 4

Table of Contents .. 5

Index of figures ... 7

Glossary ... 8

Executive Summary ... 9

1 Introduction .. 10

1.1 Motivation ... 10

1.2 Intended audience .. 10

1.3 Scope ... 10

1.4 Relation to other deliverables .. 11

2 SocialTruth Refined Platform Architecture ... 12

2.1 General logical overview ... 12

2.1.1 Key components.. 12

2.1.2 Microservice architecture style... 13

2.2 Blockchain-enabled distributed environment .. 15

2.3 SocialTruth workflow (information flow) .. 17

2.3.1 Architectural and technological view.. 18

2.4 Physical nodes comprising the system ... 19

2.5 Integration of microservices with Apache Kafka and API Gateways .. 21

2.5.1 Orchestration .. 21

2.5.2 Choreography .. 21

2.6 Digital Companion ... 22

2.6.1 Digital Companion User Workflow ... 22

2.6.2 Digital Companion User Preferences .. 24

2.6.2.1 Digital Companion Account Settings and User Preferences ... 24

2.6.2.2 Digital Companion Verification Services Settings ... 24

2.7 Verification services .. 24

2.7.1 General aspects of verification services .. 24

2.7.2 Text Verification Services .. 26

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 6 of 46

2.7.3 Image Verification Services ... 28

2.8 Expert Meta-verification Engine (EMVE) .. 29

2.9 Data models .. 31

2.10 Monitoring and observability.. 32

3 Security and privacy aspects ... 33

4 Socio-technical and human aspects .. 36

4.1 Socio-technical considerations on software architecture design ... 36

4.2 Cognitive biases and the spread of false information online ... 38

4.3 Considerations on the democratic approach proposed by SocialTruth 41

4.4 Considerations on the responsibility of the results and mistakes generated by SocialTruth

platform .. 41

4.5 Ethical and societal aspects within SocialTruth architectural design ... 42

5 Conclusions ... 44

6 References .. 45

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 7 of 46

Index of figures
Figure 1 - Relation of D2.3 to other deliverables and project tasks. .. 11

Figure 2 - SocialTruth Platform Architecture [source: DoA] ... 12

Figure 3 - Microservice – the atomic elements composing SocialTruth platform 14

Figure 4 - Blockchain Integration .. 15

Figure 5 - SocialTruth workflow diagram .. 17

Figure 6 - The mock-up of choosing verification service and changing their settings 18

Figure 7 - The SocialTruth Platform – technology stack overview. ... 19

Figure 8 - Use of Docker Swarm in the SocialTruth architecture .. 20

Figure 9 - Digital Companion searching interface ... 22

Figure 10 - Digital Companion searching interface – feedback from the system 22

Figure 11 - Digital Companion results of verification (mock-up) .. 23

Figure 12 - Mock-up of verification preferences and user options .. 24

Figure 13 - SocialTruth technical architecture - distributed verification services view 26

Figure 14 - ESF approach to text verificication in SocialTruth .. 26

Figure 15 - The processing pipeline used for the text analysis ... 27

Figure 16 - Detector based on Random Forest classifier – general overview of the method. 28

Figure 17 - SocialTruth technical architecture - single EMVE view ... 29

Figure 18 - Analysis details – mock-up example. .. 30

Figure 19 – The concept of data storage in SocialTruth ... 31

Figure 20 - Elastic stack. .. 32

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 8 of 46

Glossary

AMQP Advanced Message Queuing Protocol

API Application programming interface

CQRS Command Query Responsibility Segregation

CRUD Create Read Update Delete

CSV Comma-separated values

EMVE(s) Expert Meta-Verification Engine(s)

GDPR General Data Protection Regulation

GPS Global Positioning System

GPU Graphics Processing Unit

HMI Human-Machine Interface

HTTP(s) Hypertext Transfer Protocol (Secure)

IP Internet Protocol

J2SE Java 2 Platform, Standard Edition

JDK Java Development Kit

JSON JavaScript Object Notation

NIST National Institute of Standards and Technology

NLP Natural Language Processing

P2P Peer-to-Peer

RAG Red Green Amber

RF Random Forest

RNN Recurrent Neural Network

URI Uniform Resource Identifier

URL Uniform Resource Locator

WP Work Package

XML Extensible Markup Language

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 9 of 46

Executive Summary
This document (D2.3) exists to provide detailed, functional and non-functional specifications of the

distributed SocialTruth Architecture and the related interfaces, taking into account the use-cases and

scenarios of T2.1. The document also tackles the technical, security and social & human aspects of

SocialTruth. It is intended for the end-user partners, who will deploy the platform, the project researchers

and developers, who will be providing the technical solutions, and to the platform integrators. D2.3.

produces the outcomes to deliverables D3.4-5, D4.1-3, and D5.2.1-3. The motivation, scope, relation to

other deliverables and the intended audience is fully explained in Section 1. In the subsequent sections

the document addresses general approach to architecture design, including such aspects as information

flow, integration of verification microservices, description of particular key building blocks constituting

the SocialTrurth platform. The document focuses also on the security, privacy, socio-technical and human

aspects that are significant from the architectural viewpoint.

It is also worth mentioning that the current document is the follow-up of M6 initial version of the

SocialTruth architecture delivered at the early stage of the project and that detailed specification of

particular modules will be provided in respective deliverables of technical WPs (WP3-WP5).

This deliverable has been developed also taking into consideration the revised version of D2.1 that was

produced during March 2020 in order to address the recommendations of the experts’ review process

related to the specifications of the trust and blockchain aspects. In D2.3 we address the software design

aspects or blockchain related components. Implementation details are provided in WP4.

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 10 of 46

1 Introduction
This document combines the outcomes from the following tasks:

• Task 2.2: Distributed Architecture Design – led by UTP,

• Task 2.3: Security & Privacy by Design – led by TECOMS, and

• Task 2.4: Socio-technical and Human Aspects – led by Z&P.

It is the refined version of the SocialTruth distributed architecture.

1.1 Motivation
The motivation of this document is to present the general architecture of the SocialTruth solution,

allowing the consortium (and community) to further work on implementation and prototypes.

SocialTruth is a distributed platform to evaluate the credibility of the content (inserted for analysis by the

user) allowing for fake news detection.

The task of SocialTruth is to give some hints that the content is not credible; not to decide which is true

and which is not (especially since in the post-truth era, each single fact might have various interpretations

and descriptions).

1.2 Intended audience
This deliverable is a report produced for all the members of the SocialTruth project. Specifically, the results

of this report are addressed to the following audience:

• End-user partners, who will deploy elements of the SocialTruth platform and its particular

components,

• The SocialTruth project researchers and developers, who will provide technical solutions,

• The platform integrators.

1.3 Scope
In general, the purpose of the D2.3 document reporting this task is to provide detailed, functional and

non-functional specifications of the distributed SocialTruth Architecture and the associated interfaces

with the outputs of Task 2.1 (scenarios specification, use-cases and requirements) taken into account.

In details, D2.3 is divided into three parts, which will focus on:

• Technological aspects: specification of the SocialTruth components and interfaces with the focus

on modularity, flexibility and openness (microservice-oriented approach is considered),

• Security aspects: addressing security and privacy needs in technical specification, including such

techniques as data encryption, privacy keys, digital signatures, security of the communication

(protocols), authentication, anonymization, etc.

• Social and human aspects affecting system design, in particular the design and optimization of

HMIs for SocialTruth addressing the needs of different user categories.

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 11 of 46

1.4 Relation to other deliverables
D2.3 is the final iteration of the SocialTruth architecture, with a description of key building blocks of the

SocialTruth platform, its design and functionalities.

This deliverable is linked with other deliverables produced within the SocialTruth project. The relations

within WP2 outputs and tasks have been shown in Figure 1.

Figure 1 - Relation of D2.3 to other deliverables and project tasks.

The D2.3 deliverable produces the outcomes to the following deliverables:

• D3.4/D3.5 – SocialTruth Content Analysis and Verification Services – Release 1 and 2,

• D4.1 SocialTruth Blockchain

• D4.2 SocialTruth Lifelong Learning Expert System

• D4.3 SocialTruth Digital Companion

• D5.2.1/5.2.2/5.2.3 SocialTruth Integrated Prototype R1.0/2.0/3.0

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 12 of 46

2 SocialTruth Refined Platform Architecture

2.1 General logical overview
This section provides some general specification of the key components that compose the SocialTruth

platform. As the starting point for the SocialTruth platform architecture design specification we have used

the general model depicted in the Description of Action (see Figure 2).

Figure 2 - SocialTruth Platform Architecture [source: DoA]

2.1.1 Key components

The components within the platform are:

• Digital Companion: considered as a browser plugin that allows a non-professional user to invoke

a meta-verification process upon some form of digital content (e.g. an article), passing its URI as

an input to a meta-verification engine. In case of the non-professional use, the Digital Companion

can be used by the author of the digital article, by a reproducer (who shares the article in the

Social Media) or even by a simple reader of the article, who wishes to get an estimation of the

credibility of the content before or after reading it. In case of the professional use, the Digital

Companion allows several calls per day to the APIs of the meta-verification engine(s). SocialTruth

will follow a user-centred design approach to product for the Digital Companion.

• Verification Services: a set of heterogeneous distributed verification services providing a specific

type of content analytics (e.g. for text, image, video) or verification-relevant functionality (e.g.

emotional descriptors, social influence mapping). Some of these services are made available and

deployed by the SocialTruth consortium partners, while others are coming (either in open source

or not) from third-party service providers. Each service can be deployed at a different hosting

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 13 of 46

facility (e.g. different servers or clouds), hence there is no imposed centralization. All of them use

the same standard SocialTruth interfaces to allow them to be easily accessible, reusable and

interchangeable. The registry of service providers and the services they offer is stored and

maintained in the blockchain.

• Expert Meta-Verification Engine(s) - EMVE: to combine verification results from various

verification services to compute a meta-score that reflects the credibility of the digital content

under consideration. It follows an open design, open algorithms and an expert-systems approach.

It uses open algorithms while most of its settings and weights (e.g. which verification services to

prefer or to avoid, with what priority, etc.) can optionally be configured through its standard web-

service interfaces.

• The SocialTruth blockchain: a distributed system of records with respect to the digital content

verification history. Since the complex web and social media landscape is characterised by several

competing content creators and distributors, each with their own motives, interests, strategies

and practices, the blockchain is an ideal tool to establish reputation and trust without the need of

a central authority or intermediary (thus also avoiding centralizing even more regulatory power

to the US Internet giants, such as Facebook or Google). Hence, a public distributed ledger provides

an auditable and immutable trail of verification actions and reputation scores. The blockchain will

store article identification information, article descriptors (e.g. hash codes for digital content

integrity), author identification information, verification and meta-verification scores, as well as

identification information for the verification services that have been used to calculate them. It

will also hold the registrar of verification service providers and the services they offer.

Functionally, these elements depend on one another and are logically pile-up as classical N-tier

architectural model that is comprised of a data layer, a business layer, and a presentation layer. The

bottom data layer of the SocialTruth N-tier architecture model constitutes Verification Services together

with common interfaces providing access to the data. The middle layer, providing business logic is the

Expert Meta-Verification Engine (EMVE). Finally, the presentation layer capabilities are provided by the

Digital Companion component. Each of these functional components is further composed of dedicated

modules that provide or facilitate the dedicated functionalities the specific component is intended to

provide.

2.1.2 Microservice architecture style

The growth in container solutions has resulted in the development of microservice solutions for deploying

dedicated applications which can be integrated in the main platform using standards protocols. One of

the critical characteristics of microservice deployments is the reliance on carrying out unit testing on

individual components without any external dependencies. This feature has also contributed to the

creation of distributed and flexible workflow architecture that partly enables/disables component

instantiation without affecting the overall performance of the platform. The distribution of micro-services

packaged in containers has also resulted in achieving scalability as several instances of a single component

can be deployed in run-time.

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 14 of 46

Figure 3 - Microservice – the atomic elements composing SocialTruth platform

As it is shown in Figure 3, the key elements building the microservice components are:

• API that allows other clients to interact with the service in synchronous (e.g. REST) and
asynchronous ways (e.g. events).

• Client API for interacting with other components/services.

• Event subscriber (listener) that allows the service to retrieve notification from other services.

• Internal and private storage that maintains all relevant data required for serving the purpose of
the microservice.

The synchronous API calls can be essentially divided into commands and queries types. The command is

a type of a remote invocation that internally mutate the data of the service. For instance, service may

expose methods which add, update or delete some data. Another type of API calls constitutes queries,

that can be essentially used to find specific data using various search criteria. Such calls do not mutate

internal data.

Microservices adapt the single responsibility paradigm and promote loosely coupling. There are different

ways as to how the monolithic application can be divided into several smaller autonomous components.

The most obvious strategy is to use decomposition that is based on business capability. For example, a

system supporting sales would be decomposed into services responsible for customer, orders, invoices,

etc. In general, the process of decomposition produces smaller entities that can be developed individually

by separate teams. This allows the teams to sustain autonomy in terms of architectural patterns and

technologies selected to develop a specific service.

Microservice-based approach is a concept that is gaining in popularity. However it must be noted here

that various pros and cons exist. Analysing various microservices based solutions, several architectural

challenges can be identified:

• Decomposition related to the problems of breaking application into smaller, autonomous and

independent pieces.

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 15 of 46

• Integration related to the problems of communicating the services with each other and

presenting the scattered data to the consumers.

• Database-related issues of database architecture in the microservices environment (in particular

distributed transactions).

• Monitoring and observability of the distributed systems.

2.2 Blockchain-enabled distributed environment
The SocialTruth platform is built upon a distributed architecture allowing for optimal information

propagation. Blockchain technology has been chosen to fulfil this requirement.

Figure 4 - Blockchain Integration

The Figure 4 depicts how Blockchain technology is integrated into the global SocialTruth architecture. In

order to have support for decentralisation, the SocialTruth architecture foresees that each Blockchain

node will integrate an API that will handle the calls from the SocialTruth client (i.e. the digital companion)

and call the appropriate components.

This Blockchain node component is part of the SocialTruth P2P network. It acts as a distributed ledger and

interacts with other Blockchain nodes within the network in order to synchronize all the information about

the fakeness scoring of each item computed through the SocialTruth service. Each entity that wants to

join the SocialTruth network will have the possibility to run their own Blockchain node alongside the

gateway.

This blockchain mode will be responsible for the information sharing within SocialTruth. The data stored

into the Blockchain will be defined by (but is not limited to):

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 16 of 46

• Url: the item url that has been checked (in other words: the checked content)

• Hash: the hash representing the content of the item (article, video, picture, etc…)

• Score: the fakeness/credibility score

• The verification services used to verify the content

• The settings chosen/used by the user

• Last_check: the time that this item was last verified

In order to interact with the blockchain node component (read or write entries), one must go through the

gateway component.

The gateway component is the entry point to the SocialTruth P2P network and thus the gateway to the

SocialTruth decentralized data. Each gateway is part of the Blockchain Node. It offers a JSON REST API to

access the SocialTruth Blockchain. The endpoints of this API are:

- /url - This is typically called by the digital companion

o POST method to request the fakeness score of an entry

{

“url”: “http://www.socialtruth.eu/#how_works”,

“hash”:
“aa540c3c3c6a928e60d14bd7c51e2338646454a9da3989491ad291c2af96b9db5d91373f62
1bd43800bf2ac37e2ce61be2e582cebb28ca0b74780773871db4e8”

}

o

- /entry – This is called by the MetaVerificationSystem after the computation of the fakeness

scoring

o POST method to insert a new entry

{

“url”: “http://www.socialtruth.eu/#how_works”,

“hash”:
“aa540c3c3c6a928e60d14bd7c51e2338646454a9da3989491ad291c2af96b9db5d91373f621
bd43800bf2ac37e2ce61be2e582cebb28ca0b74780773871db4e8”,

“score”: 0

}

o PUT method to ask for a new check of an existing entry

{

“url”: “http://www.socialtruth.eu/#how_works”,

“hash”:
“aa540c3c3c6a928e60d14bd7c51e2338646454a9da3989491ad291c2af96b9db5d91373f62
1bd43800bf2ac37e2ce61be2e582cebb28ca0b74780773871db4e8”,

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 17 of 46

“score”: 0

}

2.3 SocialTruth workflow (information flow)
A typical workflow will be as follows:

1. A user enters/opens digital companion.

2. In the Digital Companion users’ interface, a link allows the users to access the EMVEs users’

interface via which the user can:

• choose preferred EMVE (Expert Meta Verification Engine) from the list of available EMVEs –

at least one EMVE should be available. Each EMVE has a set of verification services to be used.

• choose/disable some verification services, and change their settings (see Fig. 6)

3. User provides an URL to the digital companion to be checked by EMVE (and its verification

services).

4. The digital companion computes a hash of the content from the URL, and sends the data

(alongside with the calculated hashes) to EMVE.

5. The EMVE calculates/computes answer (credibility score) using chosen verification services and

provides the result to user.

6. EMVE stores the result (the link, hash, settings, used verification services, results) in blockchain

The above steps are illustrated in the following diagram (Figure 5).

Figure 5 - SocialTruth workflow diagram

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 18 of 46

The mock-up version (early prototype) of the Step 4 is presented in Figure 6 .

Figure 6 - The mock-up of choosing verification service and changing their settings

The following also applies:

1. In between points 5 and 6, EMVE checks if the exact content was earlier verified by the same

services and settings. If so, it returns the result without computations. If the verified services

and/or settings are changed, the computations are being done, and the new entry will be stored

in blockchain.

2. User can check the same content many times using different EMVE(s).

3. Different EMVE(s) do not communicate with each other.

2.3.1 Architectural and technological view

From a broader perspective, it is important to explain the environment where the proposed solutions will

operate and how they will bring benefits for the end-users (e.g. press agencies or web portals), that are

all kind of actors that need to cope with fake news challenges. Therefore, in this section, we give a general

overview of the distributed platform for fake news detection, which has been depicted in Figure 7.

The technology stack has been decomposed into the following logical elements that have been detailed

in the next subsections:

• physical elements (nodes) and their orchestration,

• verification services,

• messaging and event processing.

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 19 of 46

Figure 7 - The SocialTruth Platform – technology stack overview.

There are the following assumptions and observations coming form the diagram shown above::

1. The data is ingested into the platform either by the user (journalist, author, reader, etc.) over

HTTP(S) protocol or by using dedicated crawlers (data connectors) that send data over the binary

protocol to the Apache Kafka framework.

2. The Apache Kafka is a distributed streaming platform implementing the publish-subscribe model.

3. Once the ingested data is published to one of the Kafka topics, it can be simultaneously consumed

by various verification services and/or stream processing applications.

4. Once the services finalize their computations, they make the results available on another Kafka

topic, which can be consumed by other services again.

5. Physically, EMVEs do not have to be deployed at the same location together with Verification

Services These can subscribe to remote Kafka brokers using secure communication channels and

interact with Verification Services.

There are additional elements that in details are related the EMVE, Digital Companion, and SocialTruth

Blockchain. The details are given in the sub-sections 2.6-2.8.

2.4 Physical nodes comprising the system
The first and the most bottom layer in the technology stack constitutes the orchestration framework. It is

laid down on top of an infrastructure composed of virtual and hardware machines. This layer is intended

to implement automated resource management and thus it facilitates the entire platform with such

capabilities as flexibility, scalability, and fault tolerance. It is the responsibility of the orchestration layer

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 20 of 46

to effectively deploy the services on the available computational nodes (both physical and virtual). It is

achieved thanks to the containers that are sandboxes that contain the implemented service, together

with all the software dependencies (libraries and execution environment). In such a form, the services can

be easily migrated between the computational nodes and deployed. In the proposed solution, we have

used Docker Swarm system.

In order to address the scalability and the platform orchestration, we recommend using Docker together

with Docker Swarm to maintain the ecosystem. The concept of using Docker Swarm in the SocialTruth

architecture is presented in Figure 8.

Figure 8 - Use of Docker Swarm in the SocialTruth architecture

The Docker Community is a forum for enthusiasts that use the virtual containers, micro services and

distributed applications. Moby is an open framework created by Docker to assemble specialized container

systems. It provides a “lego set” of dozens of standard components and a framework for assembling them

into custom platforms. Docker is an open source project that is aimed at simplifying the deployment of an

allocation by means of containers. It allows for building an image with the application deployed inside. A

running instance of image is called a container. The image contains all the dependencies that the

applications need to run (e.g. operating system, runtime environment, specific system libraries, etc.). The

image can easily be run anywhere (on the variety of host operating systems) executing the application in

an isolated environment. Swarm is a Docker-native container orchestrator used to manage Docker

containers as a cluster of machines. Docker Swarm eases the deployment, organization, management and

scaling of Docker containers.

The containerisation differs from hardware virtualization in the way that it has higher performance

(containers do not emulate the entire computer architecture), lower resource consumption, and smaller

images (containers do not require a full operating system). Containers solve many problems of software

delivery, such as runtime environment configuration, isolation, application management, and portability.

Using a single image one can run many containers (copies of the same application). At the same time

Docker enables rapid “diff” changes within the various software builds to verify the consistency of the

solution over the versions. An image is a stateless building block of the Docker system. From the functional

point of view, an image has a layered structure. It means that images are easy to extend by adding

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 21 of 46

additional layers. For example, a J2SE application would have a basic image of the operating system (e.g.

Ubuntu). A JDK can easily be installed on top of it. Optionally, the user can also add additional programs

such as Git. All modifications can be persisted afterwards as a new image. In case of Docker, it provides a

dedicated configuration language that allows for quick image definition.

2.5 Integration of microservices with Apache Kafka and API Gateways
When the application is broken down into a set of separate services, eventually it so happens that these

need to communicate in order to provide complex business capabilities. That capability usually needs to

assemble the results obtained from multiple services. Many challenges may appear depending on the

application. For example, some services need to be orchestrated to produce the final result. It means that

a specific chain of actions needs to happen and these need to be sequenced in a time manner. There are

two approaches that have been described in the consecutive subsections. These two approaches have

their intrinsic advantages and are complementary to each other. In the proposed architecture, we

anticipate a mix of both when implementing various services.

2.5.1 Orchestration

The orchestration pattern introduces a central entity (orchestrator) controlling the execution of each

stage in the pipeline. In general, the orchestrator holds the code/script which indicates when and how

specific services should be called and how the responses need to be aggregated. The aggregation could

be performed in different ways and one of the most popular and widely used is the API Gateway. The

pattern appears in many microservice frameworks such as Java Spring Cloud 1. In general, the gateway

can be seen as a reverse proxy, which is used by services that reside in the backend (are hidden behind

the reverse proxy). It takes requests from the client and forwards these requests to one of the backend

services. There are several advantages of using the API Gateway pattern. Firstly, it constitutes a single

entry point for any call. This, for instance, allows for implementing the authorisation functionalities at the

gateway. Secondly, the gateway can translate the request protocol to something else such as AMQP

(Advanced Message Queuing Protocol). Thirdly, the gateway can proxy request from client to multiple

services and aggregate results.

Another benefit of adapting this pattern is the fact that we can offload the microservices authentication

burden directly onto a gateway. Moreover, we can abstract the microservice details (e.g. IP address)

making the gateway work as a reverse proxy, mapping the user request into a specific backend service

call.

This will also be beneficial from the EMVE perspective, since it will decrease coupling – the EMVEs will not

have to know the location of each service. Instead, the EMVEs will use a single entry point. This will also

encourage development of a consistent API.

2.5.2 Choreography

As we mentioned before, in the described system, we have adapted Apache Kafka. It is a distributed

streaming platform, which enables both real-time event processing and event-driven communication

between various components. From the architectural point of view, Apache Kafka constitutes a flexible

1 https://spring.io/projects/spring-cloud

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 22 of 46

and efficient way to integrate all the components, both the existing tools as well as the new ones

developed during the project or by the community.

Once the ingested data is published to one of the Kafka topics, it can be simultaneously consumed by

various verification services and/or stream processing applications. Once the services finalize their

computations, they make the results available on another Kafka topic, which can be consumed by other

services again.

2.6 Digital Companion

2.6.1 Digital Companion User Workflow

Additionally to users’ interfaces specifications in deliverable 2.2, the following user’s workflow has been

defined for the usage of the first version of the Digital Companion.

• Step 1: An individual user installs the Digital Companion plugin in their web browser(s). The solution will

be compatible with Firefox and Chromium based browsers.

• Step 2: The individual user requests the verification of information (news/post) as described in workflow

in Section 2.3 (and shown in Figure 9).

Figure 9 - Digital Companion searching interface

Immediately after giving input to the system and pressing “Enter” or the search icon, he or she should

receive feedback from the system that the operation was successful (Figure 10)

Figure 10 - Digital Companion searching interface – feedback from the system

While the system collects data and information on the content, a pop up should show with a spinning

wheel or a progress bar to keep the user in the loop during the loading phase.

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 23 of 46

• Step 3: The Digital Companion returns the result of verification. The result might be presented as shown

by the mock-up hereafter (Figure 11).

Figure 11 - Digital Companion results of verification (mock-up)

Complementary steps will be added:

• Step 4: The individual user makes their own verification. To be able to assess the accuracy of the Digital

Companion instrument, the individual user will use the classic methods to verify the information: search

engines, related social media posts, search for the original information; in par.

• Step 5: The individual user gives feedback on automatic verification. Based on their personal

investigation, the user will appraise using a score scale the reliability of the information generated by

Digital Companion, for each investigated news/post.

From the technical point of view the Digital Companion will be developed as a plugin for the latest versions

of Firefox and Chromium. As an end user provides an URL to the digital companion, the digital companion

computes a hash of the item content (hash function to be decided), makes a request to the EVME API at

“/url” with the URL and the HASH in the JSON payload. It then waits up to 1 minute for the results (a rank

from 0 to 4; 4 being fake news) from the EMVE and displays it to the end user. It has the following formats:

▪ API Rest (asynchronous operation with a maximum delay of 1 minute)

▪ Request: POST Subject JSON integrating URL and HASH

▪ Back: Return Code or JSON Object incorporating the note (5 levels) of the URL and

optional Date and number of times requested

▪ No authentication

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 24 of 46

▪ 3 hard addresses in the plugin pointing to 3 different EMVE (as to address the distributed

architecture).

2.6.2 Digital Companion User Preferences

In addition to the user interface functionalities, users will have the ability to configure their preferences

regarding the verification services provided by Digital Companion. In the following mock-up screens this

concept is illustrated. It should be noted that configurability of the provided verification services and the

corresponding EMVEs is supported by the SocialTruth architecture as is explained in Section 2.3.

2.6.2.1 Digital Companion Account Settings and User Preferences

Following a standardized way to configure account settings, the user will be introduced with the following

functionalities.

2.6.2.2 Digital Companion Verification Services Settings

According to Section 2.3, SocialTruth supports multiple verification services. The user can choose

preferred EMVE from the list of available EMVEs and then is able to change the settings of the available

verification services. This concept is depicted in the following mock-up screen (Figure 12).

Figure 12 - Mock-up of verification preferences and user options

2.7 Verification services

2.7.1 General aspects of verification services

Verification services as such are the key building blocks of the system and are deployed as micro-services.

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 25 of 46

Micro-service is an independently deployable component, which (in the proposed architecture) is packed

as a Docker container. Each micro-service is focused on providing single functionality.

Moreover, each functional service provides an API that allows other clients to interact with the service in

synchronous (e.g. REST) and asynchronous ways (e.g., events). Each service can also have client API for

interacting with other components/services (e.g. databases). Moreover, the service can subscribe (listen)

to a notification sent from other components in the system. In the proposed architecture, we heavily use

asynchronous event-based communication in favour of synchronous calls. This allows us to avoid tight

coupling between the verification services and other components in the platform. In that regard, each

verification service subscribes to a dedicated topic and produces results on another one.

The distributed verification system will be composed of several heterogeneous services that will be

functionally focused on a specific kind of context analysis, e.g. images, text, etc. (Figure 13). From the end-

user point of view these specific services should be visible as a monolithic system providing various

capabilities.

In that sense, an API Gateway pattern could be used. It would allow for hiding the microservices behind

the middle-layer that would be acting as a reverse proxy, handing the client requests, passing them to the

specific services, and returning the received results to the client.

Another benefit of adapting this pattern is the fact that we can offload the microservices authentication

burden directly onto a gateway. Moreover, we can abstract the microservice details (e.g. IP address)

making the gateway work as a reverse proxy, mapping the user request into a specific backend service

call. This will also be beneficial from the EMVE perspective, since it will decrease coupling – the EMVEs

will not have to know the location of each service. Instead, the EMVEs will use a single entry point. This

will also encourage development of a consistent API.

The services behind the gateway will be stateless entities that take the data in a predefined format and

return the result. The interaction between them will also be limited. Nonetheless, the services will need

several elements to facilitate their work. These include data storage, search engine, data processing,

publish-subscribe systems, etc.

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 26 of 46

Figure 13 - SocialTruth technical architecture - distributed verification services view

Once the data is uploaded, the services can process it. Usually, it will take some time. Therefore, instead

of periodically pooling the services for current state, an event-based publish-subscribe system would be

a better fit in such scenarios. For example, a client requesting the verification of a specific image can

submit the request via standard API and subscribe to the event bus for updates. Once the service finishes

the processing it sends notification event via the event bus. Using such platforms as Apache Kafka it is

possible to guarantee fault tolerance and scalability of such mechanisms. For instance, if the network

connection fails or the client is down when a notification event is sent, the client is always capable of

receiving the event once it is back to normal state.

2.7.2 Text Verification Services

2.7.2.1 ESF approach

The textual verification component consists in three services: style, sentiment and similarity (Figure 14).

Figure 14 - ESF approach to text verificication in SocialTruth

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 27 of 46

Each of these services has the goal of providing the features discriminating fake news against true news,

such as :

• Does the document provide extreme point of views/emotions ?

• Is it written in a bad style ?

• How similar are the facts presented in other trustworthy documents ?

These services will be accessible via a REST API that can be hosted on any device. The implementation and

use cases of these services will be detailed in deliverable D3.4: “SocialTruth Content Analysis and

Verification Services – Release 1” (M16)

Each of these services outputs will be JSON and XML files describing the document’s features related to

these aspects. The formal structure of these outputs will also be defined in deliverable D3.4: “SocialTruth

Content Analysis and Verification Services – Release 1”.

2.7.2.2 UTP approach

For the text verification scenario we plan to combine various NLP-based (Natural Language Processing)

detection models that are put into a pipeline depicted in Figure 15.

Figure 15 - The processing pipeline used for the text analysis

So far, we have proposed two fake news detectors that use entirely different machine learning

approaches. The processing happens in parallel and the results from both classifiers are combined into a

single report for the user.

The first used detector is based on the Deep Recurrent Neural Network (Deep RNN). To tackle the

challenge of fake news, for one of the verification services a deep RNN (Recurrent Neural Network) built

on top of Flair framework was used. This solution offers outstanding features in terms of neural network

design, includes many state-of-the-art methods, among them numerous methods based on deep learning,

also enabling GPU-based training. Flair is a Natural Language Processing library designed for all word

embeddings as well as arbitrary combinations of embeddings. The crucial elements of creating the fake

news detection model were carried out with the support of the Flair library. The training process was

carried out based on deep learning methods after word embeddings had been carried out using the

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 28 of 46

modern and effective procedures in this area. In our work, we chose to use various types of neural

networks to solve the problem of text-based fake news detection.

Figure 16 - Detector based on Random Forest classifier – general overview of the method.

The second used detector is based on Random Forest (RF) and its overview is presented in Figure 16. This

approach is a different method from an architectural point of view. It is complementary to the Deep

Recurrent Neural Network described in the previous section. The main difference is that, in contrast to

RNN, the RF can be trained significantly faster or even in an online manner. It means that the model can

be updated right away when a new data sample is available. This substantially increases the flexibility and

makes it easier to update the entire detection model when new data is available.

2.7.3 Image Verification Services

The image verification comes in three different standard services plus an integrated services to get the

results of these three standard services.

These services are:

• Copy-move detection: Do we have fake duplications of the image content subject to post

processing?

• Cut-paste detection: Do we have content of two or more images in one subject to post

processing?

• Erase-fill detection: Do we have anything missing in the image?

These services will be accessible via a single model file (this will be the pre-trained model) which is

required to design the API to execute the model on sufficiently resourceful computing device. Making

these models continually update their parameters require their API to collect more data. The

implementation of the copy-move model is available in detail in deliverable D3.3: “SocialTruth Deep

Learning Multimedia Verification”.

On top of these services, another classifier model is designed to integrate these models by diverting a

given image to different basic services and provide the final verification results. The API to this service can

be directly integrated into the main architecture, as the whole image verification service will be in one API

with the classifier.

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 29 of 46

2.8 Expert Meta-verification Engine (EMVE)
This services essentially combine verification results from various verification services to compute a meta-

score that reflects the credibility of the digital content under consideration.

Figure 17 - SocialTruth technical architecture - single EMVE view

The Expert Meta Verification Engine (EMVE) has the responsibility to collect, gather, reconcile, organize,

structure & analyse the features provided by the different SocialTruth verification & analysis services.

The input to the EMVE shall be the different responses of the SocialTruth services. These services inputs

should have a structured format (JSON, XML, CSV…) that will be defined in Deliverable 4.2.

The features presented in these inputs can be:

• Continuous (any decimal variable in a range), for example: the sentiment analysis can range

between [-100 : +100]

• Categorical (categorical variables that range in a discrete range). For example, an image can be

Fake or Not Fake. These are two categorical variables.

In other words, EMVE uses available verification services (customized according to user settings and

needs) to provide an answer of the analysed content. The mock-up early prototype can be shown in Figure

18.

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 30 of 46

Figure 18 - Analysis details – mock-up example.

The EMVEs will need to implement the CQRS pattern (Command Query Responsibility Segregation) as the

operation of querying and indexing of the document will take considerably varied amounts of time.

Querying (or reading) the information of an already indexed document will be significantly faster, in

particular if the document verification will be based on the URL address (e.g. we may already know that

the news published on a specific website is fake and the results of analyses are already there in the

SocialTruth database). In that case, the results could be returned in a simple request-response manner via

the RESTful API. On the other hand, the process of indexation (document ingestion) will require a different

approach. The uploaded documents need to be stored and analysed asynchronously by the services. In

that case, an orchestration coordinated by the EMVE will be required. For example, it will need to start

the analyses by pointing the services to the data to be analysed, wait for the results, consolidate them

into a single information piece that will be consumed by the requestor. In the following scenario, a publish-

subscribe messaging system would be a better fit than the request-response approach.

The EMVEs will also be the elements which are closely interacting with the end user. There are two main

cases where the user will be engaged. First, the operation when user queries the EMVE to verify a

particular document, news, post, etc.; second, the situation where the user wants to add a new document

with the information about its credibility. Whenever the document has already been indexed and

annotated by someone else, the user may also express her or his opinion regarding it.

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 31 of 46

2.9 Data models
The microservices need to store data. Depending on the context, this can also be a challenging task to

implement. Defining the appropriate database architecture is problematic due to following aspects:

• Sharing a single database between microservices impacts the system scalability and services

autonomy

• Some business capabilities need data that is owned by several microservices

• Implementing transaction mechanism in a distributed environment is problematic and requires

coordination and extensive communication of participating microservices

The good practice says that a single database per service should be used. This means that the specific

service has its own database that is isolated and is not shared with others directly. This avoids the

situations where the development of one service and its data model influences the development of

another service. However, it so happens that the isolated service eventually needs to reach out for the

data maintained by another service. One of the options solving this would be a CQRS pattern (Command

Query Responsibility Segregation. It promotes splitting the command and query parts, so that typical

CRUD (Create Read Update Delete) command-based operations are handled by one system while data

querying capabilities are served by the other. In order to provide query results that join data from multiple

services materialised views are used. The views are updated whenever any part of the data changes. These

are communicated using event busses (e.g. Apache Kafka). The service maintaining the materialised view

listens to the event bus for notifications and updates the view accordingly.

There will be a certain amount of data that will need to be processed, analysed, stored, and indexed.

Rather than sending the entire documents back and forth for verification, the data should be uploaded

once and later referenced using pointers (e.g. URL address). Therefore, adequate data storage is an

important element of the architecture.

Figure 19 – The concept of data storage in SocialTruth

From the overall description of the SocialTruth proposal emerges a general data model (Figure 19) to be

shared among various modules comprising the platform. The first data entity is the document to be

verified, the second one is the author of this document. The third one is the reputation (verification) score.

Finally, the evaluation report also constitutes an important element.

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 32 of 46

The system should also provide capabilities to look the previous verifications up. These should be indexed

in various ways in order to avoid double checking of the same document. The most straightforward way

would be indexing the results by source (e.g. URL address).

2.10 Monitoring and observability
In a microservice architecture a single request often spans multiple services that are hosted on separate

physical servers. Each service generates a log file that is stored locally. In such a case, reconstructing the

original information flow (from a client request to the returned result) could be time consuming if done

manually. This is also an important aspect from the system auditing or user accounting point of view. If

one needs to trace the request end-to-end, a dedicated centralized service aggregating logs is needed.

An effective approach increasing traceability would be to assign each request with a unique identifier. In

case of HTTP protocols, additional header parameter could be added. Then, the identifier passed to the

services can be used by them to annotate each operation stored in a log file. The log files can be efficiently

shipped for central analysis and inspection using such frameworks as Elastic Stack, together with Apache

Kafka. It consists of four elements:

• Beats – a sensor retrieving and capturing the operational data (the logfiles)

• Logstash – an entity ingesting the data into the Elasticsearch engine

• Elasticsearch – a data storage and indexation engine

• Kibana – a visualisation frontend for advanced analysis of the ingested data

Figure 20 - Elastic stack.

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 33 of 46

3 Security and privacy aspects
Security by design and privacy by design guidelines have been outlined in D2.2, and served as a reference

in the detailed design of the various components of the SocialTruth platform, as previously described in

this document.

The redefined distributed system architecture detailed in this deliverable complies with the guidelines

provided in D2.2 and D7.1 regarding data security and protection: all the components of the platform

have been defined taking into consideration the best data protection practices, “security by design” and

“privacy by design” principles.

In detail, in compliance with the principles of data protection regulation and best practices, the following

measures will be taken:

• Lawfulness, fairness and transparency:

o the digital companion user will be provided with adequate notice that will detail which

data will be processed and for what purpose, and any other GDPR required information.

Before being able to install and use the digital companion, the user must express their

acceptance by clicking on the appropriate button;

o only for evidentiary purposes regarding the provision of consent to the processing of data,

the platform will keep the following data in a dedicated log: timestamp, user IP address,

port, browser used;

• Purpose limitation:

o except for the evidentiary purposes referred to in the previous point, or when providing

consent to the processing of data provided during the activation of the platform, no other

user data that is not essential for the correct functioning of the platform will be processed.

o user data will only be used for the functioning of the service and will in no way be stored

in other databases in order to be correlated, aggregated or associated with other data

sources for other purposes like building analysis models.

o all information relating to the use of EMVE will be anonymized, eliminating any reference

to the user who generated it.

o the anonymized information can be used to perform any type of analysis deemed

appropriate for the purpose of monitoring and improving the SocialTruth platform.

• Data minimization:

o the digital companion will transmit to EMVE only the data strictly necessary for powering

the engine itself, in order to provide the user with feedback on the information to be

verified: no data, unless strictly necessary for the functioning of the platform, will be

transmitted;

o the most sensitive data processed is the url sent by the user. The url to be verified allows

in theory to know what the subject's interests are. By associating the same user with a

series of urls sent for verification, in fact, it would be possible to build a very detailed

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 34 of 46

profiling of the subject. Even more, considering that the professional end users of the

platform (such as journalists and teachers) will be subjects, the danger of building analysis

models related to their behavior is clearly evident. Think, for example, of the risk of being

able to verify and monitor the urls visited by a particular journalist at a certain moment,

who may be working on particularly delicate investigations; that said, the data processing

structure will not allow associating n searches to the same user, even for a limited period

of time. In fact, the URL data sent will be completely released from any information that

can be traced back to the individual user, if not for the period strictly and technically

necessary to provide the service to the user. Therefore, the platform will not store the

user's IP address or any other data suitable for the identification

• Accuracy:

o given the limited storage of data relating to users made by the SocialTruth platform, there

are no particular critical issues regarding the principle of data accuracy. In compliance

with the provisions of the GDPR, however, a contact point dedicated to users will be set

up, dedicated to providing information and carrying out any data correction or update

operations.

• Storage limitation:

o the data necessary for the transactions between the user interface and the SocialTruth

platform will be kept only for the period strictly necessary for the provision of the

technical verification service. In no way will they be kept for a longer and unnecessary

period; the deletion of the user data occurs when the Expert Meta Verification Engine

sends the response to the digital companion.

o The data deletion mechanism must be automated by the scripts dedicated to this

function. It is necessary to set up a verification and auditing procedure that controls the

effective deletion of data.

• Integrity and confidentiality:

o in order to guarantee the integrity of the data, suitable measures must be taken to avoid

accidental loss, destruction or damage of the data. A business continuity and disaster

recovery plan must be prepared, and for this purpose suitable data backup processes

must be adopted both on remote platforms and in physical places. Data backup must be

performed automatically and with a frequency suitable to minimize the risks of continuity

of the service (minimum daily cadence). The data recovery plan must be detailed, and the

recovery time must be suitable to guarantee the restoration of the functionality of the

service within a maximum time of 8 hours. The whole plan must be subjected to validation

and verification tests carried out by an external expert;

established that the storage of user data is limited to the minimum necessary; it is

however essential to take into account the risks in relation to the confidentiality of the

data: for this purpose, it is necessary to adopt all the appropriate measures that prevent

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 35 of 46

unauthorized access to information. For this purpose, it is necessary to configure the

systems in such a way as to avoid unauthorized access. From an organizational point of

view, it is necessary to appoint a system administrator who defines the user access

policies to the platform and implements the related security measures and data access

policies.

Therefore, in practical terms the following aspects should be taken into account:

- the data of the user is never stored anywhere (neither IP address, nor location etc.)

- the data from user(s) is never used to build any models/aggregated data (purpose limitation)

- no sensitive data is being used (GPS etc.)

- user can choose if and what will be stored in blockchain

- no one else can see the analysis/results of single user (unless desired).

In addition to the above, best practices will be adopted to ensure adequate level of security:

• all data communication channels will be encrypted

• if passwords are used, the password policy should be compliant with NIST updated guidelines

• before entering into production, it is recommended to perform SocialTruth platform penetration

testing performed by an external provider.

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 36 of 46

4 Socio-technical and human aspects
This section is dedicated to the final refinement of the SocialTruth sociotechnical aspects. The main

recommendations and requirements from the socio-technical perspective have been already extensively

discussed in previous deliverables D2.1 and D2.2, and there is no need to recall them here as they were

well received from all the involved work packages.

In this section we would like to address the following specific issues:

• the human aspects related to software architecture and software engineering (section 4.1);

• the role of cognitive biases in the spread of false information (section 4.2).

The other ethical issues concerning responsibility, gender management and data management will be

addressed in deliverable 1.3.1 and 1.3.2 scheduled at M18 and M36.

4.1 Socio-technical considerations on software architecture design
Software Architecture may be defined as the fundamental structures of a software system and the

discipline of creating such structures and systems. Each structure comprises software elements, the

relations among them, and the properties of both the elements and relations2. The architecture of a

software system is a metaphor, analogous to the architecture of a building3. It functions as a blueprint for

the system and the developing project, laying out the tasks necessary to be executed by the design teams4.

Software architecture is referred to as the notion of the most important aspects of the internal design of

a software system5.

Software architecture is a unique and highly complicated engineering discipline with fundamental

cognitive, organizational, and resource constraints. These constraints are inherent due to the

architecture’s intangibility, intricate inner connections, the cognitive difficulty of software and their

dependency on systems, diversity, and human. One may argue that the core elements of a software

architecture are purely technical; nonetheless, some psychological aspects also exist that deserve a

dedicated mention. The most disruptive psychological aspect is the one related to the human capability

to understand complexity, coupled with the need to work together. It is paramount to understand and

work with the human brains that realise the software, and the ones that eventually use it.

For this reason, the software architecture has to be relatively simple to understand. All assumptions must

be challenged in order to find the path of the least resistance and reach an acceptable level of simplicity,

so that all the people working to develop the software system can understand it. As described in section

2 Clements, Paul; Felix Bachmann; Len Bass; David Garlan; James Ivers; Reed Little; Paulo Merson; Robert Nord;
Judith Stafford (2010). Documenting Software Architectures: Views and Beyond, Second Edition. Boston: Addison-
Wesley. ISBN 978-0-321-55268-6
3 Perry, D. E.; Wolf, A. L. (1992). "Foundations for the study of software architecture" ACM SIGSOFT Software
Engineering Notes. 17 (4): 40.
4 "Software Architecture". www.sei.cmu.edu
5 Martin Fowler - Software Architecture Guide (2019)

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 37 of 46

2, the architecture design proposed in this document consists in well-defined system building blocks with

clear connections and mutual relationships.

Then, the software architecture must contain fair rules telling people how to work together, considering

the individual responsibility over the implementation of unit components and the encouragement of

diversity of thought and action. There should be space and opportunity for an individual to perform acts

that may benefit the whole, while keeping adherence to the rules for remixing and ownership6. In fact,

the microservices contemplated in the design of the SocialTruth software system adapt the single

responsibility paradigm, as described in section 2.1.

On the other hand, the architecture should also make silent experimentation easy, giving different teams

the opportunity for success without punishing the failure encountered on the research road. This is

particularly true for the different verification services to be developed, that fall within the area of research

and, in fact, have a detailed lab-verification plan7.

Finally, the software system architecture also has to give economic incentive to invest in making it happen:

in this perspective, the architecture is also a market place. Indeed, the design described in this document

and the lab-verification plan are both heavily driven by the end-user requirements gathered during

previous phases of work package 2, that are continuously updated and refined, and by the overall

exploitation plan8.

With regard to the quality of the software architecture proposed here, it is important to recall that quality

is a generic measure of the degree of excellence of a product or service against a given standard, and for

software this measure is a multifaceted attribute characterizing the quantity of both utility and durability

of the product and/or service.

Software quality can be perceived from a relative point of view as the conformity of a software system to

its specifications (design models). Therefore, software quality is inversely proportional to the differences

between the behaviours and performance of a software system and those required in the specifications.

However, many quality attributes of software, such as design quality, usability, implementation efficiency,

and reliability, cannot be quantified9 and some qualitative or informal validation and evaluation

techniques, such as review and prototyping, are adopted in software engineering10. These aspects are

reflected into a certain degree of freedom that is left open in the software architecture, enabling agility

and helping to embrace and implement changes in requirements or processes. Thus, some characteristics

of a good architecture relate to good modularity reached through an appropriate decomposition strategy,

6 Pieter Hintjens “ZeroMQ Messaging for Many Applications” Chapter 6 Publisher: O'Reilly Media (March 2013)
http://hintjens.com/blog:8
7 SocialTruth deliverable D5.1 “Overall Evaluation Plan” (submitted on M14)
8 SocialTruth deliverable D6.8 “Preliminary SocialTruth Business Plan” (submitted on M12) and upcoming updates
9 Yingxu Wang, Shushma Patel “Exploring the Cognitive Foundations of Software Engineering” Int. J. of Software
Science and Computational Intelligence, 1(2), 1-19, April-June 2009
10 Jonathan Arnowitz, Michael Arent and Nevin Berger “Effective Prototyping for Software Makers” A volume in
Interactive Technologies (2007) Elsevier Inc. https://doi.org/10.1016/B978-0-12-088568-8.X5000-0

http://hintjens.com/blog:8
https://doi.org/10.1016/B978-0-12-088568-8.X5000-0

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 38 of 46

irrespective of whether the solution under development has a monolithic or a microservices

architecture11.

4.2 Cognitive biases and the spread of false information online
In deliverable D2.1 we explained that “falsehood diffuses significantly faster, deeper and more broadly

than true news, especially regarding politics. It appears that false news is generally more novel, and that

novel information is more likely to be shared, possibly because people feel more compellent about sharing

novel news. Moreover, the emotional reactions of recipients of false news were found to be mainly surprise

and disgust, whereas the truth inspired sadness, anticipation and trust. Also, the greater likelihood of

people to retweet falsity more than the truth is what drives the spread of false news, despite network and

individual factors that favour the truth. The recommendations about misinformation-containment policies

include emphasizing behavioral interventions, like labelling and incentives to dissuade the spread of

misinformation.”12

These are the most authoritative considerations that are currently available about the reasoning behind

the spread of disinformation and falsehood online, but other aspects may contribute to this as well.

Among them, we would like to investigate here the effect of cognitive biases affecting human reasoning.

A cognitive bias is a systematic pattern of deviation from objectivity and rationality in reasoning and

judgment, that can be useful in everyday life, but can also sometimes lead to the distortion of reality,

inaccurate judgment, illogical interpretation, or what is broadly called irrationality. As described by Tom

Stafford, a senior lecturer in psychology and cognitive science at the University of Sheffield13, “Cognitive

biases exist for very good evolutionary reasons. They are not rogue processes which contaminate what

would be otherwise intelligent thought: they are the foundation of intelligent thought. Human beings must

make decisions with limited time, information and intellectual energy, and useful short-cuts may be based

on cognitive biases.”

As an example, let us consider the confirmation bias, which is the tendency to search for or interpret

information in a way that confirms one’s preconceptions. As Stafford explains, “although there are risks

to preferring to seek information that confirms whatever you already believe, the strategy does provide a

way of dealing with complex information, and a starting point (i.e. what you already suspect) which is as

good as any other starting point. It doesn’t require that you speculate endless about what might be true,

and in many situations the world (or other people) is more than likely to put contradictory evidence in front

of you without you having to expend effort in seeking it out. Confirmation bias exists because it is an

efficient information seeking strategy – certainly more efficient than constantly trying to disprove every

aspect of what you believe”.

Many features of the human brain evolved in order to allow fast and energy-saving reactions to external

stimulations. This is a very useful and important capability, which for example allows to promptly react to

11 George Fairbanks “Just Enough Software Architecture: A Risk-Driven Approach” Marshall & Brainerd (2010) ISBN
10: 0984618104 ISBN 13: 9780984618101
12 S. Vosoughi, D. Roy e S. Aral, “The spread of true and false news online” Science, vol. 359, pp. 1146-1151, 2018.
13 Stafford, T. (2015) “Bias Mitigation”

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 39 of 46

dangerous situations. Neuroscientists explain the physiological mechanism for this fast reactivity in terms

of differentiated processing of information within the brain (LeDoux model), based on parallel

transmission of information from the thalamus to the amygdala (raw information, rapidly sent) and to the

brain cortex (more complete information, sent more slowly).

This is a useful mechanism for making fast decisions, but cognitive biases can skew judgement and may

have some particularly pernicious effects on the spread of false news, especially online, since on the web

all operations are quick and nimble.

We propose here a very brief description of the most common cognitive biases affecting human

reasoning14:

• Confirmation bias: the tendency to search for or interpret information in a way that confirms one’s
preconceptions

• Representativeness: the tendency to classify based on the partial similarities to something typical,
characteristic, representative, already known; to the typical stereotype image

• Availability heuristic: the tendency to estimate what is more likely by what is more available in
memory, which is biased toward vivid, unusual, or emotionally charged examples

• Anchoring: the tendency to rely too heavily, or “anchor” on a past reference or on one trait or
piece of information when making decisions

• Hindsight bias: the tendency, after an event has occurred, to see the event as having been
predictable, despite there has been little or no objective basis for predicting it, prior to its
occurrence

• Framing effect: the tendency to decide on options based on whether the options are presented
with positive or negative connotations

• Focusing effect: the tendency to place too much importance on one aspect of an event, causing
error in accurately evaluating its importance

• Law of small numbers: the tendency to estimate the features of a sample population from a small
number of observations or data points

• Probability neglect: the tendency to ignore a small risk or give it too much rank

• Frequency bias: the illusion in which a word, a name or other thing that has recently come to one’s
attention suddenly appears “everywhere” with improbable frequency

• Information overload: too much information causes a problem in effectively understanding an
issue or making decisions

• Denial: facing a fact or information too uncomfortable to accept leads to rejecting it, despite what
may be overwhelming evidence

• Post-storm neurosis: danger of overreacting to circumstances having just had a severe event

14 PYTHIA project D2.4 “Recommendations on how to improve the accuracy of technology foresight” available at
http://www.pythia-padr.eu/web/guest/public-deliverables

http://www.pythia-padr.eu/web/guest/public-deliverables

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 40 of 46

• Group-thinking: risk that group members stick to common assumptions and views that are never
questioned and challenged

• False analogy: two objects (or events) are shown to be similar. Then it is argued that since one of
the two objects has a certain property, so the other object must also have it

Very often false news produced on purpose leverages these cognitive biases and tricks the readers’ brains,

in the same way advertisements titillate consumers.

Another important aspect to be considered in this frame is the existence of ideological polarization and

the so-called “filter bubbles” that make people belonging to closed online environments (such as

Facebook groups) be subjected to selective exposure on social media15. But can we state that cognitive

biases of filter bubbles represent a fundamental contribution to the spread of false news?

Actually, although some authors claim that biases make people more vulnerable to misinformation

spread by social media16, in particular with regard to the news about politics, recent literature works

suggest that this may not really the case: Pennycook et al.17 researched this issue and found that

susceptibility to fake news is driven more by lazy thinking than it is by partisan bias per se. The author

states that reasoning, when performed, allows people to effectively differentiate the fake from real

regardless of political ideology.

Therefore, the key point is to find a way to make people stop for a little, think and consciously decide if

they believe or not in the news they are reading and if sharing it would provide benefit. In 2010 Cheng

and Wu18 investigated possible moderators of the framing effect and found that a significant attenuation

of this bias occurred when the participants of the experiments were subjected to weak/strong warning

messages. The magnitude of this attenuation was found to depend on the level of involvement of the

participants in the task. Less involved participants were more susceptible to the framing effect than the

more involved subjects.

Taking these research works as reliable and recalling the recommendation proposed on Science to

“emphasize behavioural interventions, like labelling and incentives to dissuade the spread of

misinformation”, we believe that the approach proposed by the SocialTruth project, based on awareness

rising and labelling of the news that are likely to be untrustworthy or not, may be successful and provide

a genuine and relevant contribution to the global struggle against the spread of falsehood online.

15 Dominic Spohr “Fake news and ideological polarization: Filter bubbles and selective exposure on social media”
Business Information Review Volume: 34 issue: 3, page(s): 150-160 https://doi.org/10.1177/0266382117722446
16 Giovanni Luca Ciampaglia, Filippo Menczer, The Conversation US (June 21, 2018)
17 Gordon Pennycook, David G. Rand, “Lazy, not biased: Susceptibility to partisan fake news is better explained by
lack of reasoning than by motivated reasoning” Cognition, Volume 188, 2019, Pages 39-50, ISSN 0010-0277,
https://doi.org/10.1016/j.cognition.2018.06.011
18 F.-F. Cheng e C.-S. Wu, “Debiasing the framing effect: The effect of warning and involvement” Decision Support
Systems 49, p. 328–334, 2010.

https://doi.org/10.1177/0266382117722446
https://doi.org/10.1016/j.cognition.2018.06.011

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 41 of 46

4.3 Considerations on the democratic approach proposed by SocialTruth
In this section we would like to clarify some points with regard to the democratic and pluralistic approach

proposed by SocialTruth, aiming at developing a distributed content verification solution.

The fundamental idea behind this approach is that a distributed system should allow to provide

trustworthiness scores about the news and highlight credible information without affecting the essential

freedom of journalism, which is a pillar of democratic society.

The system is open and democratic, so anyone, in principle, could plug in their own verification service.

Who is responsible if fraudulent services are added, by mistake or on purpose? If we only accept

“certified” services, then the system is not open anymore. If we accept all services with no evaluation of

their quality, then the whole system becomes untrustworthy.

These are interesting points and hit a core aspect of democracy: the need for a certain degree of self-

regulation to maintain quality standards and provide credibility, while not closing the system.

An example of how this aspect can be handled can be found in scientific disciplines and is represented by

the peer review process, where anyone can contribute to general knowledge providing his or her own

work products, and each work product is evaluated by all the other contributors (peers). If the work is

considered credible, relevant and well done, it is somehow accredited as valuable. Following this

mechanism, the performances of contributors can be tracked, and it is possible to build a reputation score.

However, given the aforementioned priorities related to system openness and democratic representation

of diverse verification methods, SocialTRUTH is putting specific emphasis on delivering a quality controlled

solution that will support the decision making of the addressed stakeholders: journalists, teachers and

tutors, consumers and the general public. The verification services will be quality controlled and

accompanied by validation methods and records before they will be opened to the public. Developers’

details, tools, methods and certicicates will be documented and openly available to all end-users. Thus

the systems will not be a hub for weakly justified and dubious verification efforts, but rather and open

ecosystem where the most accurate and trustworthy services will be showcased and promoted. In any

case, verification engines that would be community created and pose difficulties during QC and validation,

will be accompanied with clear disclaimers of their status.

4.4 Considerations on the responsibility of the results and mistakes generated

by SocialTruth platform

Further in the project, also the aspects of responsibility (ethical and legal considerations) of the possible

mistakes should be analyzed.

As in all IT systems, some mistakes can be generated by using SocialTruth enabled platform and services,

too.

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 42 of 46

Some examples are:

1. someone writes a false story about a known person (e.g. corruption or drugs) and chosen EMVE

suggests it is truth - such a person can lose reputation, job, elections etc.

2. author/journalist writes a true story, and EMVE says it is fake...it might also cost reputation...

Who would be responsible and attributed for such mistakes?

As described in above sections, there might be several EMVE available to check the content.

Such an approach is very democratic and allows users to make many analysis and independent checks,

and to choose the EMVE and services they trust.

Of course, different EMVE can be owned by private or public organizations (TV, portal, ministry, press

agency, NGOs), and then those organizations take responsibility for the offered results (calculated

according to their business model).

A key point that should be worth noting is that SocialTRUTH and its supporting end-user application, the

Digital Companion, will aim at providing the end-user with a barometer or heatmap of the credibility of a

selected source. The more verification services rank a selected source high enough, the more the

reputation and trustworthiness of the source will be secured. The set of tools that will be developed by

SocialTRUTH will not only strengthen the verification capacity of the stakeholders, but will also formulate

a baseline of trusted sources that can be used to gauge and eliminate fake-news, misinformation and

disinformation incident in the future.

4.5 Ethical and societal aspects within SocialTruth architectural design

SocialTruth architecture has been created by following Privacy by Design principle and within ethical and

democratic considerations at start.

In particular, the following architectural choices implement ethical requirements as well as societal and

democratic values:

1. Following open and democratic approach, SocialTruth architecture allows for having many

EMVEs. It means, there is not one single-truth authority, but users can choose freely which EMVE

to use, or they can compare results by using several EMVEs. In such ecosystem, each EMVE owner

would and should be willing to offer correct and trustworthy results for citizens.

2. Following open and democratic approach, SocialTruth architecture allows for deploying many

verification services. Each EMVE can use several services that could be offered by EMVE owners,

but also by researchers, scientists, communities in a very open ecosystem. Moreover, users have

the possibility to choose which verification services (offered by certain EMVE) they wish to use,

and users are able to configure some settings of those services.

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 43 of 46

3. The results of the platform are verifiable and the results are possible to be re-calculated and

checked by interested communities. All the results coming from the chosen verification services

contain information about the settings and configuration parameters, so that the same input data

(e.g. the link to the article/news to be checked) can be re-calculated by other actors (e.g.

interested researchers or data scientists) with the same settings.

4. The results of verification will be stored in distributed blockchain.

5. SocialTruth platform is open and transparent in principle, allowing for creation of EMVE, data

models, algorithms and verification services.

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 44 of 46

5 Conclusions
This document is the final release of the SocialTruth architecture design. It is the refined version of D2.2

document in which initial specification of the platform architecture has been prepared at the early stage

of the project (until M6).

This report will help particular work packages’ and technology/components’ creators to follow the

architectural principles and guidelines as well as common understanding of the SocialTruth ecosystem. As

the input, we have used the requirements coming from D2.1, the best practices and knowledge of current

technologies and architecture design principles, as well as findings, considerations and initial output of

D2.2 deliverable.

This deliverable provides the logical and technical views on the SocialTruth platform, including blockchain-

enabled distribution environment, information flow, aspects of microservices integration adopted to be

used in the SocialTruth, aspects of data modelling, system monitoring and observability.

The report also displays the modules and components of the platform, lists the needed functionalities,

discusses the interoperability aspects, as well as the security, privacy, social and human aspects.

At the time of submission of D2.3, the part of architecture (e.g. Kafka) is operationalized. We have

developed the first prototype of the framework allowing for execution of two verification services (text

based). Further development efforts are ongoing.

Some papers documenting our work on the architecture with initial results are now submitted (the results

are not yet known), such as:

• Distributed Architecture for Fake News Detection for CISIS 2020 (authors from UTP)

• Fake News Detection from Data Streams for IJCNN 2020 (authors from UTP)

Detailed specification of platform modules, including technical aspects of their implementation will be

provided in the later phase of the project in respective deliverables. Blockchain design and

implementation, Lifelong learning expert system and Digital Companion module will be presented in

details in D4.1-D4.3 documents, Deep Learning Multimedia Verification block in D3.4-D3.5, while

integrated prototype of the platform in three releases of D5.2.x deliverables.

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 45 of 46

6 References

A., W. (2009). The Colour Affects System of Colour Psychology. AIC Quadrennial Congress.

Alicke, M. D., Vredenburg, D. S., Hiatt, M., & Govorun, O. (2001). The "better than myself effect".

Motivation and Emotion, 25, 7-22.

Backholm, K., Ausserhofer, J., Frey, E., Grondhal Larsen, A., Hornmoen, H., Hogvag, J., & Reimerth, G.

(2017). Crises, Rumours and Reposts: Journalists' Social Media COntent Gathering and Verification

Practices in Breacking News Situations. Media and COmmunication, 5(2), 67-76.

Brandtzaeg, P. B., Lüders, M., Spangenberg, J., Rath-Wiggins, L., & Følstad, A. (2016). Emerging Journalistic

Verification Practices Concerning Social Media. Journalism Practice, 10(3), 323-342.

Demangeot, C., & Broderick, A. J. (2007). Conceptualising consumer behaviour in online shopping

environments. International Journal of Retail & Distribution Management, 35(11), 878-894.

Diakopoulos, N., De Choudhury, M., & Naaman, M. (2012). Finding and assessing soccial media

information sources in the context of journalism. Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems. Austin, TX.

Djamasbi, S., Siegel, M., & Tullis, T. (2011). Visual Hierarchy and Viewing Behavior: An Eye Tracking Study.

Human-Computer Interaction. Design and Development Approaches in Computer Science, 331-

340.

Elder, R. S., & Krishna, A. (2012). The “Visual Depiction Effect” in Advertising: Facilitating Embodied Mental

Simulation through Product Orientation. Journal of Consumer Research, 38(6), 988-1003.

Fadeyev, D. (n.d.). The Usability Post - Thoughts on design and user experience. Retrieved from

http://usabilitypost.com

Gorini M., C. V. (2013). EMERALD deliverable 'D2.3 - EMERALD System Functional Architecture'.

Hallock, J. (2003). Colour Assignment - Preferences and Associations.

Imtiaz, S. (2016). The Psychology Behind Web Design. McMaster University.

Lindgaard, G., Fernandes, G., Dudek, C., & Brown, J. (2006). Attention web designers: You have 50

milliseconds to make a good first impression! Behaviour & Information Technology, 25(2), 115-

126.

Schifferes, S., Newman, N., Thurman, N., Corney, D., Goker, A., & Martin, C. (2014). Identifying and

verifying news through social media: developing a user-centered tool for professional journalists.

Digital Journalism, 2(3), 406-418.

SocialTruth D2.3 Refined Distributed System Architecture

H2020-ICT-28-2018- 825477 SocialTruth Project Page 46 of 46

Schwartz, R., Naaman, M., & Teodoro, R. (2015). Editorial algorithms: using social media to discover and

report local news. Ninth International AAAI Conference on Web and Social Media. Oxford, UK.

Sillence, E., Briggs, P., Fishwick, L., & Harris, P. (2004). Trust and mistrust of online health sites. Proceedings

of the 2004 Conference on Human Factors in Computing Systems, 663-670.

StatCounter. (n.d.). Retrieved from http://gs.statcounter.com/

The Open Group. (n.d.). ArchiMate®, 2.1 specification. Retrieved December 2013, from The Open Group:

http://pubs.opengroup.org/architecture/archimate2-doc/

Tuch, A. N., Presslaber, E. E., Stöcklin, M., Opwis, K., & Bargas-Avila, J. A. (2012). The role of visual

complexity and prototypicality regarding first impression of websites: Working towards

understanding aesthetic judgments. International Journal of Human-Computer Studies, 70(11),

794-811.

Verhagen, T., Boter, J., & Adelaar, T. (2010). The Effect of Product Type on Consumer Preferences for

Website Content Elements: An Empirical Study. Journal of Computer-Mediated Communication,

16(1), 139-170.

Veromann, V.-J. (n.d.). RAG+B traffic light rating system – expanding established design patterns.

https://weekdone.com.

Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M., Montesi, F., Mustafin, R., & Safina, L. (2017).

Microservices: yesterday, today, and tomorrow. In Present and ulterior software engineering (pp.

195-216). Springer, Cham.

Dragoni, N., Lanese, I., Larsen, S. T., Mazzara, M., Mustafin, R., & Safina, L. (2017, June). Microservices:

How to make your application scale. In International Andrei Ershov Memorial Conference on

Perspectives of System Informatics (pp. 95-104). Springer, Cham.

Microservices Authentication and Authorization Solutions, available online: https://medium.com/tech-

tajawal/microservice-authentication-and-authorization-solutions-e0e5e74b248a (accessed May

23, 2018).

https://medium.com/tech-tajawal/microservice-authentication-and-authorization-solutions-e0e5e74b248a
https://medium.com/tech-tajawal/microservice-authentication-and-authorization-solutions-e0e5e74b248a

