
* Dissemination Level: PU= Public, RE= Restricted to a group specified by the Consortium, PP= Restricted to other

program participants (including the Commission services), CO= Confidential, only for

members of the Consortium (including the Commission services)

** Nature of the Deliverable: P= Prototype, R= Report, S= Specification, T= Tool, O= Other

D2.2 Distributed System Architecture, Data Modelling

and Interfaces

Dissemination Level: PU

Nature of the Deliverable: R

Date: 31/05/2019

Distribution: Internal

Editors: UTP

Contributors: UTP, Thales, ESF, QWANT, Z&P, TECOMS

Reviewers: ICCS, ESF

Funded by the Horizon 2020 Framework

Programme of the European Union

SocialTruth - Grant Agreement 825477

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 2 of 82

Disclaimer

This document contains material which is copyright of certain SocialTruth consortium parties. All

SocialTruth consortium parties have agreed to the full publication of this document.

Neither the SocialTruth consortium as a whole, nor any certain party of the SocialTruth consortium

warrants that the information contained in this document is capable of use, or that use of the

information is free from risk, and accepts no liability for loss or damage suffered by any person using

the information.

The contents of this document are the sole responsibility of the SocialTruth consortium and can in no

way be taken to reflect the views of the European Commission. The European Commission is not

responsible for any use that may be made of the information it contains.

The commercial use of any information contained in this document requires a license from the

proprietor of that information. For information and permission requests, contact the SocialTruth

project coordinator Dr. Konstantinos Demestichas (ICCS) at cdemest@cn.ntua.gr.

The content of this document may be freely distributed, reproduced or copied as content in the public

domain, for non-commercial purposes, at the following conditions:

a) it is requested that in any subsequent use of this work the SocialTruth project is given appropriate

acknowledgement with the following suggested citation:

“Deliverable 2.2 Distributed System Architecture, Data Modelling and Interfaces (2019)” produced

under the SocialTruth project, which has received funding from the European Union’s Horizon2020

Programme for research and innovation under grant agreement No.724087. Available at:

http://www.socialtruth.eu“

this document may contain material, information, text, and/or images created and/or prepared by

individuals or institutions external to the Socialtruth consortium, that may be protected by copyright.

These sources are mentioned in the “References” section, in captions and in footnotes. Users must seek

permission from the copyright owner(s) to use this material.

mailto:cdemest@cn.ntua.gr
http://www.socialtruth.eu/

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 3 of 82

Revision History

Date Rev. Description Partner

24/01/2019 1.0 First version of DDP UTP

28/01/2019 2.0 Final version of DDP UTP

20/02/2019 3.0 Initial deliverable content (sections 1 and 2) UTP

08/05/2019 4.0 Pre final version with sections 2 and 5 completed UTP

15/05/2019 5.0 Version after technical telco UTP

24/05/2019 6.0 Consolidated version UTP

28/05/2019 7.0 Pre-final version UTP

28/05/2019 8.0 Version after review UTP

30/05/2019 9.0 Final version UTP

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 4 of 82

List of Authors

Partner Author

Z&P Giulia Venturi

ADNK Giovanni Parise, Eugenio Lauro

LSBU Manik Gupta

ICCS Konstantinos Demestichas, Ioannis Loumiotis, George Koutalieris, Pavlos

Kosmides, Evgenia Adamopoulou

ADNK Giovanni Parise, Eugenio Lauro

UTP Rafał Renk, Michał Choraś, Rafał Kozik, Marek Pawlicki, Krzysztof Samp, Paweł

Ksieniewicz, Michał Woźniak

TECOMS Guido Villa

QWANT Stan ASSIER, Noel Martin

ESF Charles Huot, Sonia Collada

DEASC Sebastiano Bagarotto

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 5 of 82

Table of Contents
Revision History .. 3

List of Authors ... 4

Table of Contents .. 5

Index of figures ... 8

Index of graphs ... 9

Index of tables ... 10

Glossary ... 11

Executive Summary ... 12

Table of Contents .. 13

1 Introduction .. 16

1.1 Motivation ... 16

1.2 Intended audience .. 16

1.3 Scope ... 16

1.4 Relation to other deliverables .. 17

2 SocialTruth Platform Architecture .. 18

2.1 Analysis of input from D2.1 ... 18

2.2 Architectural challenges.. 18

2.3 Microservices approach overview .. 19

2.3.1 Popularity of micro-services ... 19

2.3.2 Standardisation of API models .. 20

2.4 Service-oriented architecture vs. Microservices architecture styles .. 20

2.5 Architectural design patterns ... 23

2.5.1 Decomposition .. 23

2.5.2 Integration .. 23

2.5.3 Database ... 24

2.5.4 Monitoring and Observability ... 24

2.6 General specification of SocialTruth components .. 24

2.7 The operational ecosystem ... 26

2.8 The technical architecture .. 27

2.8.1 Distributed content verification system ... 29

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 6 of 82

2.9 SocialTruth deployment options ... 31

2.9.1 Deployment Models .. 31

2.9.2 Public cloud ... 32

2.9.3 Private cloud ... 32

2.9.4 Community cloud .. 33

2.9.5 Hybrid cloud .. 33

3 Integration aspects ... 35

3.1 API to QWANT solutions ... 35

3.2 API to ESF solutions ... 41

3.2.1 Integration .. 43

3.3 API to Thales solutions .. 46

3.3.1 Attribute-based Access Control .. 46

3.3.2 Description of the API and the interface .. 48

3.4 Interoperability/Integration aspects ... 49

3.5 Blockchain aspects .. 49

3.5.1 SocialTruth Blockchain implementation ... 49

3.5.2 Blockchain interface .. 50

3.6 Containers/dockerization.. 51

4 Security and privacy aspects ... 53

4.1 Authentication and authorization ... 53

4.2 Privacy by design and by default (GDPR), security by design, link to D7.1 54

5 Socio-technical and human factors ... 60

5.1 Introduction .. 60

5.1.1 Basic usability recommendations ... 60

5.1.2 Gestalt principles .. 62

5.1.3 Brand emphasis and use of colours .. 63

5.2 Interface recommendations for use case 1 .. 64

5.2.1 Content verification request input.. 66

5.2.2 Content verification results ... 66

5.2.3 Search filters ... 68

5.2.4 Content verification history (blockchain) .. 69

5.3 Interface recommendations for use case 2 .. 69

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 7 of 82

5.3.1 Target platforms ... 70

5.3.2 Users attraction ... 71

5.3.3 Content verification request input.. 73

5.3.4 Content verification results ... 74

5.3.5 Automatic alert ... 75

5.3.6 Sharing .. 75

5.4 Interface recommendations for use case 3 .. 75

5.4.1 Colour-based rating... 75

5.5 Interface recommendations for use case 4 .. 78

6 Conclusions ... 80

7 References .. 80

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 8 of 82

Index of figures
Figure 1 - Relation of D2.2 with other deliverables and project tasks.. 17

Figure 2 - Comparison of monolithic application (left) vs. microservices approach (right). 22

Figure 3 - SocialTruth Platform Architecture [source: DoA] ... 25

Figure 4 - Use of Docker Swarm in the SocialTruth architecture .. 26

Figure 5 - SocialTruth technical architecture .. 28

Figure 6 - SocialTruth technical architecture - single EMVE view ... 29

Figure 7 - SocialTruth technical architecture - distributed verification services view 30

Figure 8 - Concept of data storage in SocialTruth ... 31

Figure 9 - Qwant API to get Web results ... 36

Figure 10- Qwant API to get news results ... 37

Figure 11 - Qwant API to get images results ... 38

Figure 12 - Qwant API to get video results ... 39

Figure 13 - Qwant API to get social (tweets) results ... 40

Figure 14 - Cogito components ... 41

Figure 15 - Cogito Intelligence API .. 42

Figure 16 - Relation between Cogito Discover Proxy and other Cogito components 44

Figure 17 - Architecture of Access Request between User/Resource via Blockchain Network. 47

Figure 18: Simplified entity-relation diagram of an identity SC. ... 48

Figure 19 - Socialtruth Logo .. 64

Figure 20 - Socialtruth colours .. 64

Figure 21 - Search bar (1) .. 66

Figure 22 - Search bar (2) .. 66

Figure 23 - Example of user interface for use case 1 .. 67

Figure 24 - Tooltip visualisation .. 68

Figure 25 - Interface options ... 68

Figure 26 - Filters .. 69

Figure 27 - Content verification history button .. 69

Figure 28 - Search bar (1) .. 73

Figure 29 - Right-click menu.. 73

Figure 30 - Search bar (2) .. 73

Figure 31 - Example of user interface for use case 2 (1) ... 74

Figure 32 - Example of user interface for use case 2 (2) ... 75

Figure 33 - RAG system ... 76

Figure 34 - RAG + B system ... 76

Figure 35 - RAG + B + extra system ... 76

Figure 36 - Example of user interface for use case 3 .. 77

Figure 37 - Example of user interface for use case 3 with tooltip .. 78

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 9 of 82

Index of graphs
Graph 1 - Desktop vs. mobile vs. tablet market share (February 2019, Europe and Romania) 70

Graph 2 - Desktop browser market share (February 2019, Europe and Romania) 70

Graph 3 - Mobile OS market share (February 2019, Europe and Romania) ... 71

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 10 of 82

Index of tables
Table 1 - Summary of cloud deployment parameters .. 34

Table 2 - Psychology-based design tactics .. 61

Table 3 - Gestalt principles .. 62

Table 4 - Major functions of a web-based online content validation toolset for journalists 65

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 11 of 82

Glossary

WP Work Package

RAG Red Green Amber

HMI Human-Machine Interface

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 12 of 82

Executive Summary
This document (D2.2) exists to provide detailed, functional and non-functional specifications of the

distributed SocialTruth Architecture and the related interfaces, taking into account the use-cases and

scenarios of T2.1. The document also tackles the technical, security and social & human aspects of

SocialTruth. It is intended for the end-user partners, who will deploy the platform, the project researchers

and developers, who will be providing the technical solutions, and to the platform integrators. D2.2.

produces the outcomes to deliverables D3.1-3, D4.1-3, and D5.2.1. The motivation, scope, relation to

other deliverables and the intended audience is fully explained in Section 1.

Section 2 addresses the architectural questions of the SocialTruth platform. The main challenges include

scalability, availability, independent and autonomous management, decentralised governance and failure

isolation. After careful consideration, a microservices-based solution is selected.

In this section, a general specification of the key components of the SocialTruth platform is also given.

Most notably, the description of the Digital Companion, the Distributed Verification Services, the Expert

Media-Verification, and the SocialTruth blockchain - the key pillars of the platform - is put forward.

To address the scalability issue, Docker alongside DockerSwarm is proposed as the operational ecosystem.

Besides scalability, other advantages of the container technology include simple dependency

management and application versioning, lightweight deployment and solving challenges connected with

isolation and portability, as well as with runtime environment configuration.

In accordance with the SocialTruth DoA, the deployment of project outputs will be characterised by

decentralization. For this reason, four possible, cloud-based deployment options are considered and

evaluated - Public-, Private-, Community- and Hybrid-Cloud.

Section 3 is dealing with the integration aspects. Various interfaces to existing partner solutions are

outlined, ensuring proper communications between the solutions and the SocialTruth platform. API’s to

QWANT solutions, ESF solutions (Cogito 14) and Thales solutions are considered. The SocialTruth

Blockchain implementation is investigated and some preliminary options are presented: Multichain,

Hyperledger fabric or Ethereum. The interface to the blockchain is also delineated.

Section 4 details the ways SocialTruth will comply with the GDPR and the OWASP Dev Guide Principles of

Security Engineering, ensuring both Privacy by Design and Security by Design. The challenges of

authentication in the selected architecture model are also listed.

Section 5 covers the socio-technical and human factors of the project. The section evaluates how the

SocialTruth platform interface will achieve clearness, conciseness, familiarity, responsiveness,

consistency, aesthetics, effectiveness and recovery, which are established guidelines for usability,

providing a solid foundation for exceptional user experience. The platform is going for a natural and

discreet look, fostering a habits-driven attitude of the user towards it. The SocialTruth branding, as well

as the recommendations for each use case are exemplified. Chrome and Safari are chosen as the web-

browsers the plugin is going to cover, and Android is selected for the mobile application.

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 13 of 82

Table of Contents
Revision History .. 3

List of Authors ... 4

Table of Contents .. 5

Index of figures ... 8

Index of graphs ... 9

Index of tables ... 10

Glossary ... 11

Executive Summary ... 12

Table of Contents .. 13

1 Introduction .. 16

1.1 Motivation ... 16

1.2 Intended audience .. 16

1.3 Scope ... 16

1.4 Relation to other deliverables .. 17

2 SocialTruth Platform Architecture .. 18

2.1 Analysis of input from D2.1 ... 18

2.2 Architectural challenges.. 18

2.3 Microservices approach overview .. 19

2.3.1 Popularity of micro-services ... 19

2.3.2 Standardisation of API models .. 20

2.4 Service-oriented architecture vs. Microservices architecture styles .. 20

2.5 Architectural design patterns ... 23

2.5.1 Decomposition .. 23

2.5.2 Integration .. 23

2.5.3 Database ... 24

2.5.4 Monitoring and Observability ... 24

2.6 General specification of SocialTruth components .. 24

2.7 The operational ecosystem ... 26

2.8 The technical architecture .. 27

2.8.1 Distributed content verification system ... 29

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 14 of 82

2.9 SocialTruth deployment options ... 31

2.9.1 Deployment Models .. 31

2.9.2 Public cloud ... 32

2.9.3 Private cloud ... 32

2.9.4 Community cloud .. 33

2.9.5 Hybrid cloud .. 33

3 Integration aspects ... 35

3.1 API to QWANT solutions ... 35

3.2 API to ESF solutions ... 41

3.2.1 Integration .. 43

3.3 API to Thales solutions .. 46

3.3.1 Attribute-based Access Control .. 46

3.3.2 Description of the API and the interface .. 48

3.4 Interoperability/Integration aspects ... 49

3.5 Blockchain aspects .. 49

3.5.1 SocialTruth Blockchain implementation ... 49

3.5.2 Blockchain interface .. 50

3.6 Containers/dockerization.. 51

4 Security and privacy aspects ... 53

4.1 Authentication and authorization ... 53

4.2 Privacy by design and by default (GDPR), security by design, link to D7.1 54

5 Socio-technical and human factors ... 60

5.1 Introduction .. 60

5.1.1 Basic usability recommendations ... 60

5.1.2 Gestalt principles .. 62

5.1.3 Brand emphasis and use of colours .. 63

5.2 Interface recommendations for use case 1 .. 64

5.2.1 Content verification request input.. 66

5.2.2 Content verification results ... 66

5.2.3 Search filters ... 68

5.2.4 Content verification history (blockchain) .. 69

5.3 Interface recommendations for use case 2 .. 69

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 15 of 82

5.3.1 Target platforms ... 70

5.3.2 Users attraction ... 71

5.3.3 Content verification request input.. 73

5.3.4 Content verification results ... 74

5.3.5 Automatic alert ... 75

5.3.6 Sharing .. 75

5.4 Interface recommendations for use case 3 .. 75

5.4.1 Colour-based rating... 75

5.5 Interface recommendations for use case 4 .. 78

6 Conclusions ... 80

7 References .. 80

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 16 of 82

1 Introduction
This document combines outcomes from the following tasks:

• Task 2.2: Distributed Architecture Design – led by UTP,

• Task 2.3: Security & Privacy by Design – led by TECOMS, and

• Task 2.4: Socio-technical and Human Aspects – led by Z&P.

D2.3 document (Refined Distributed System Architecture) is considered as the follow-up of the current

deliverable and expected in M15. Therefore, the current document is the initial version of the SocialTruth

architecture and will be updated until M15.

1.1 Motivation
Task 2.2 is responsible for the definition of the modular, flexible and open distributed architecture to

support the operation of the SocialTruth solution and its uninterrupted service provision. It will identify

the specifications for all software components as well as the interfaces and interactions among different

components of the architecture. The specifications of the interfaces with the external services

interoperating with the SocialTruth components will be produced as well. The structural and behavioural

description of the proposed functionalities and services, as well as the deployment options for each

introduced component, will be provided using a well-defined Architecture Description Language (ADL). A

(micro) service-oriented approach will be adopted, wherever applicable, while other important attributes,

such as modularity, openness and scalability should be taken into account at the same time.

1.2 Intended audience
This deliverable is a report produced for all the members of the SocialTruth project. Specifically, the results

of this report are addressed to the following audience:

• End-user partners, who will deploy elements of the SocialTruth platform and its particular

components,

• The SocialTruth project researchers and developers, who will provide technical solutions,

• The platform integrators.

1.3 Scope
In general, the purpose of D2.2 document reporting this task is to provide detailed, functional and non-

functional specifications of the distributed SocialTruth Architecture and the associated interfaces with the

outputs of Task 2.1 (scenarios specification, use-cases and requirements) taken into account.

In details, D2.2 will be divided into three parts, which will focus on:

• Technological aspects: specification of the SocialTruth components and interfaces with the focus

on modularity, flexibility and openness (microservice-oriented approach is considered),

• Security aspects: addressing security and privacy needs in technical specification, including such

techniques as data encryption, privacy keys, digital signatures, security of the communication

(protocols), authentication, anonymization, etc.

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 17 of 82

• Social and human aspects affecting system design, in particular design and optimization of HMIs

for SocialTruth addressing needs of different user categories.

1.4 Relation to other deliverables
D2.2 is the first iteration of the SocialTruth architecture, laying the foundation for D2.3, where a fully

detailed top down and for each of modules description, design and functionalities will be exposed. D2.2

will also include the scout of the State-of-the-Art technologies that will be used in the project, as well as

the potential interfaces that will be incorporated into the system, both external for the overall platform

(Common Interfaces) as well as internal for each of the composing modules.

This deliverable is linked with other deliverables produced within the SocialTruth project. The relations

have been shown in Figure 1.

Figure 1 - Relation of D2.2 with other deliverables and project tasks.

The D2.2 deliverable produces outcomes to the following deliverables:

• D3.1 Social Mining Descriptors

• D3.2 SocialTruth Semantic Analyzer

• D3.3 SocialTruth Deep Learning Multimedia Verification

• D4.1 SocialTruth Blockchain

• D4.2 SocialTruth Lifelong Learning Expert System

• D4.3 SocialTruth Digital Companion

• D5.2.1 SocialTruth Integrated Prototype R1.0

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 18 of 82

2 SocialTruth Platform Architecture

2.1 Analysis of input from D2.1
SocialTruth D2.1 The requirements and use-cases deliverable finalized in M3, was focused on

identification and detailed description of the project scenarios and presentation of the user requirements

gathering and formalization process. It also provided common understanding of the SocialTruth research

and development goals, guiding the further consortium work, also in terms of D2.2 architectural design.

In detail, D2.1 provided:

Pilots technological needs assessment – from the architectural viewpoint it refers to the verification

services layer of the SocialTruth architecture. From the initial architecture perspective provided in the

current document, the verification services are transparent, i.e. the integration mechanisms and API

definitions provided in Section 3, as well as the microservice-based approach ensure scalability and

extendibility of the platform without complex adaptation of the architecture to the existing or new

services to be plugged into the system. Details of the verification services and mechanisms hidden behind

APIs are not significant for the architecture design.

Details on four SocialTruth scenarios/use-cases, namely: (1) Checking sources in the production process,

(2) Digital companion for content verification, (3) Search engine rankings & advertising prevention for

fraudulent sites, and (4) External sources reliability check in the educational domain. Although these use-

cases are put into different contexts and have different actors/end-users, they can be characterized with

some commonalities (the same or very similar functionalities), such as: launching verification process

using SocialTruth front-end (Digital Companion), requesting verification services to calculate scores

separately for each verification criterion, fine-tuning or specification of thresholds for verification criteria,

combination of verification results into the single credibility score and displaying it to a user, storing

results in a blockchain. Therefore, the current release of the SocialTruth architecture specifies general

building blocks and relations between them, covering the main, common features of the system relevant

to each of the use-cases. They enable execution of the verification process for each of end-user categories

and in each specified scenario.

Formalization of the SocialTruth requirements with the end-user assessment of their criticality and the

UML use case diagrams – similarly to the detailed use-cases/scenarios, the functional requirements show

priorities of the main/common system functionalities, covered by the current architecture release. The

detailed functional requirements expressed by the end-users refer to the level of particular verification

services (therefore they are non-significant in the general architecture context). The non-functional

requirements, including scalability, integration capabilities, security and privacy, and usability are covered

in the current document in sections 3, 4 and 5 respectively.

2.2 Architectural challenges
The distributed environment imposes many technical challenges that have to be addressed. These are

commonly related to the fact that the Microservices-oriented architecture style promotes loosely

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 19 of 82

coupling and decomposition of application into smaller and independent entities that implement specific

business logic. Some of the challenges include:

• Scalability

• Availability

• Independent and autonomous management

• Decentralized governance

• Failure isolation

2.3 Microservices approach overview

2.3.1 Popularity of micro-services

The growth in container solutions has resulted in the development of micro-service solutions for

deploying dedicated applications which can be integrated in the main platform using standards protocols.

One of the critical characteristics of micro-service deployments is the reliance on carrying out unit testing

on individual components without any external dependencies. This feature has also contributed to the

creation of distributed and flexible workflow architecture that partly enables/disables component

instantiation without affecting the overall performance of the platform. The distribution of micro-services

packaged in containers has also resulted in achieving scalability as several instances of a single component

can be deployed in run-time. Service Architecture Models

The industry-best practice allows for two modes of integration for sharing information between software

components. The first approach is based on webservices, which uses the HTTP protocol for transporting

information between components. The implementation is light weight and supports flexibility in the

design of the APIs. It also supports several forms of MIME data payload between different components.

On the other hand, the popularity of messaging solutions based on queues has also been a popular

solution for the integration of complex systems over the last few years. The adaptation of messaging

protocols for enterprise integration has been considered to provide extended reliability. Since both

integration models provide an added advantage to the platform, the approach in the SocialTruth

architecture design will be to adopt a hybrid solution that supports both forms of integration.

2.3.1.1 RESTful Webservices

The microservice architectural style is an approach which allows for the development of an application as

a suite of small services, each running in its own process and communicating with lightweight

mechanisms, like HTTP, as aforesaid. This enables each microservice to be independently deployable and

scalable. This provides a firm module boundary, therefore facilitates easier management and empowers

being written by different teams, and thus making it worth to be considered in the SocialTruth

architecture.

We can define the microservices architecture as a distributed architectural system that organically evolves

into scalable, loosely coupled, independently managed sets of services that work together to deliver

business value with acceptable trade-offs. We can name the following key features of microservices:

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 20 of 82

flexible technology choices; “smart endpoints” “dumb pipes”; Independently scalable; Decentralized,

choreographed interactions; Testable; Automation; Designed for failure; Evolving design.

In fact, in current architectures we can see a transition from the current (still) governing one: Services,

SOA, ESB, Adapters, Protocol Mediation, Enterprise Integration patterns, Canonical Messages, to the

Upcoming one: API, RESTful Microservices, Gateways, HTTP(s) Only, Service Discovery, Circuit Breakers.

We are moving from a hub architecture to a peer to peer one. The microservice architecture is very well

suited for state of the art and particularly adapts well to the agile methodology developments, REST,

domain (modular) driven designs, etc.

2.3.1.2 Messaging platforms

The Advanced Message Queuing Protocol (AMQP) is an open standard for passing business messages

between applications or organizations. It connects systems, feeds business processes with the information

they need and reliably transmits onward the instructions that achieve their goals. RabbitMQ implements

the AMQP protocol, providing thus a common platform to services for their message driven

communication. It is open-source and is packaged as a server tool. Among other alternative solutions, it

is the most mature and offers client libraries for almost any programming language. RabbitMQ facilitates

the work queues required for the task dispatching in the context of the SocialTruth architecture

integration.

• Reliability: Offers message delivery acknowledgments, a feature that is not supported by other

similar solutions

• Flexible routing: Messages are routed from exchanges offering advanced routing (e.g., automatic

publish of one message to multiple queues)

• Many clients: Client libraries are available for a large number of programming languages

• Highly available queues: Queues can be mirrored across several queues in a cluster

• Management UI: Offers an easy-to-use management UI for monitoring the message broker

• Large Community: There is a large community supporting RabbitMQ, so as all sorts of clients,

plugins, guides, etc. can be easily obtained.

2.3.2 Standardisation of API models

The SocialTruth architecture will adopt a holistic approach for achieving optimal integration of system

components. The webservice based integration will be adopted for those components which share the

state of the system without too much computational overhead while the messaging queues will be used

for instantiating computationally expensive services. Each component integrated in the architecture will

specify the APIs for integration.

Other considerations like loosely/tightly coupled components or relying on external tools (and thus hybrid

clouds) will be also considered, making it more appealing in this case to rely on a webservices approach.

2.4 Service-oriented architecture vs. Microservices architecture styles
The simple definition of the service-oriented architecture (SOA) is an architecture allowing

interconnection, communication and coordination of services. Service in such an architecture is well-

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 21 of 82

defined, self-contained, and independent from the other services function, designed to realize some

functionality e.g. by software component. In SOA, services have to be accessible remotely (by the user or

other services) and can be updated, extended or unplugged independently and with no impact on the

status of other services. Service providers provide one or more services through published interfaces for

service consumers, which invoke services directly or through an intermediary.

In addition, services can be considered as a black box for its consumers, i.e. provide specific result based

on the provided input after the consumer request. Also, service in SOA architecture may consist of other

underlying services. Different services can be used in conjunction to provide the functionality of a large

software application. What is important in this style, services are also technology independent - service

provider components and service consumer components can use different implementation languages and

platforms.

Service-oriented architectural style can be characterized by the combination of the following principles:

• Loose coupling – relations between services that that minimizes their mutual dependencies and

only requires that they maintain an awareness of each other

• Standardized Service Contract - services adhere to a communications agreement (a service-

description), as defined collectively by one or more service description documents

• Abstraction - services hide logic from the outside world (beyond what is described in the service

description)

• Reusability - logic is divided into services with the intention of promoting reuse

• Composability – services can be reused in multiple solutions that are themselves made up of

composed services (e.g. complex functionalities are break down into simple tasks)

• Autonomy - services have control over the logic they encapsulate

• Statelessness - services minimize retaining information specific to an activity

• Discoverability - services are designed to be found and discovered, usually using a service registry

or via other available discovery mechanisms

The practical implementation of SOA is Enterprise Service Bus (ESB) serving as a hub for connected

services as well as centralizing and simplifying communication between them.

On the other hand, the recent advancements in cloud solutions have changed the way of building

middleware components for the Platform as a Service (PaaS) architectures together with the container-

based technologies that gain popularity in development and management of architectures. One of the

architecture styles employed to reduce the investment of effort in rewriting the legacy monolithic systems

(e.g. based on ESB) to provide new functionalities is the microservices approach. Microservices are used

to build a system as a set of autonomous, self-contained, and loosely coupled capabilities. Usually, the

application build in a microservices architecture style is assembled as an artefact embedding all

dependencies (libraries, HTTP server etc.) and run as standalone process (Figure 2).

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 22 of 82

Figure 2 - Comparison of monolithic application (left) vs. microservices approach (right).

The potential use of microservices architectural style in the context of SocialTruth could be beneficial due

to a number of capabilities it offers, e.g.: ease of integration of new services/functionalities into the

framework, simplification of integration tests, simplification of development updates (only the relevant

parts of an application), better resiliency and stability of the application by eliminating a susceptibility to

a single point of failure. Microservices/API-based approaches also have some drawbacks, namely the

complexity of development distributed systems, multiple databases and the necessary transaction

management, container-based deployment.

Taking into account the general, high-level architecture of the SociaTruth (please refer to the next

subsection) and the nature of the research and development project, the recommendation is to adapt

microservice architecture style – as initially suggested in the SocialTruth DoA. The rationale behind this

choice is:

• Easiest implementation of new services, changes and updates – particularly important for

frequent releases of the system that is developed in collaborative project,

• Better fitting to cloud-based approach and SocialTruth requirement of services decentralization,

• More suitable to use containers (e.g. Docker),

• Better suited for smaller (than large enterprise solutions) and well-partitioned, web-based

systems,

• Better addressing requirement of the SocialTruth extendibility.

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 23 of 82

2.5 Architectural design patterns
Analysing various microservices based solutions, several architectural design patterns can be identified.

These could be clustered according the challenge they need to address, namely:

• Decomposition patterns addressing the problems of breaking application into smaller,

autonomous and independent pieces.

• Integration patterns addressing the problems of communicating the services with each other

and presenting the scattered data to the consumers.

• Database-related patterns aiming at addressing the problems of database architecture in the

microservices environment.

• Monitoring and observability patterns tackling the challenge of monitoring the distributed

systems.

2.5.1 Decomposition

Microservices adapt the single responsibility paradigm and promote loosely coupling. There are different

ways as to how the monolithic application can be divided into several smaller autonomous components.

The most obvious strategy is to use decomposition that is based on business capability. For example, a

system supporting sales would be decomposed in to services responsible for customer, orders, invoices,

etc. In general, the process of decomposition produces smaller entities that can be developed individually

by separate teams. This allows the teams to sustain autonomy in terms of architectural patterns and

technologies selected to develop a specific service.

2.5.2 Integration

When the application is broken down into a set of separate services, eventually it happens that these

need to communicate in order to provide complex business capabilities. That capability usually needs to

assemble the results obtained from multiple services.

Many challenges may appear depending on the application. For example, some services need to be

orchestrated to produce the final result. It means that a specific chain of actions needs to happen and

these need to be sequenced in a time manner. In that case an aggregator pattern could be adapted. In

general, such a pattern defines different strategies to aggregate data from services and then provides

them to the consumer.

The aggregation could be performed in different ways and one of the most popular and widely used is the

API Gateway pattern. The pattern appears in many microservice frameworks such as Java Spring Cloud 1.

In general, the gateway can be seen as a reverse proxy, which is used by services that reside in the backend

(are hidden behind the reverse proxy). It takes requests from the client and forwards these requests to

one of the backend services. There are several advantages of using the API Gateway pattern. Firstly, it

constitutes a single entry point for any call. This, for instance, allows for implementing the authorisation

functionalities at the gateway. Secondly, the gateway can translate the request protocol to something

1 https://spring.io/projects/spring-cloud

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 24 of 82

else such as AMQP (Advanced Message Queuing Protocol). Thirdly, the gateway can proxy request from

client to multiple services and aggregate results.

2.5.3 Database

The microservices need to store data. Depending on the context, this can also be a challenging task to

implement. Defining the appropriate database architecture is problematic due to following aspects:

• Sharing single database between microservice impacts the system scalability and services

autonomy

• Some business capabilities need data that is owned by several microservices

• Implementing transaction mechanism in a distributed environment is problematic and requires

coordination and extensive communication of participating microservices

The good practice says that single database per service should be used. This means that the specific service

has its own database that is isolated and is not shared with others directly. This avoids the situations

where the development of one service and its data model influences the development of another service.

However, it happens that the isolated service eventually needs to reach out for the data maintained by

another service. One of the options solving this would be a CQRS pattern (Command Query Responsibility

Segregation. It promotes splitting the command and query parts, so that typical CRUD (Create Read

Update Delete) command-based operations are handled by one system while data querying capabilities

are served by other. In order to provide query results that join data from multiple services materialised

views are used. The views are updated whenever any part of the data changes. These are communicated

using event busses (e.g. Apache Kafka or RabbitMQ). The service maintaining the materialised view listens

to the event bus for notifications and updates the view accordingly.

2.5.4 Monitoring and Observability

In a microservice architecture a single request often spans multiple services that are hosted on separate

physical servers. Each service generates a log file that is stored locally. In such case, reconstructing the

original information flow (from client request to the returned result) could be time consuming if done

manually. This is also an important aspect from the system auditing or user accounting point of view. If

one needs to trace the request end-to-end a dedicated centralized service aggregating logs is needed.

An effective approach increasing traceability would be to assign each request with a unique identifier. In

case of HTTP protocols additional header parameter could be added. Then, the identifier passed to the

services can be used by them to annotate each operation stored in a log file. The log files can be efficiently

shipped for central analysis and inspection using such frameworks as Elastic Stack together with Apache

Kafka.

2.6 General specification of SocialTruth components
This section provides general specification of the key components that compose the SocialTruth platform.

As the starting point for the SocialTruth platform architecture design specification we have used the

general model depicted in the Description of Action (see Figure 3).

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 25 of 82

Figure 3 - SocialTruth Platform Architecture [source: DoA]

The key pillars of SocialTruth platform constitute:

• Digital Companion: considered as a browser plugin that allows a non-professional user to invoke

a meta-verification process upon some form of digital content (e.g. an article), passing its URI as

an input to a meta-verification engine. In case of a non-professional use, the Digital Companion

can be used by the author of the digital article, by a reproducer (who shares the article in the

Social Media) or even by a simple reader of the article, who wishes to get an estimation of the

credibility of the content before or after reading it. In case of a professional use, the Digital

Companion is a web front-end for medium/large organisations (e.g. news agencies, search

engines, etc.) that allows several calls per day to the APIs of the meta-verification engine(s).

SocialTruth will follow a user-centred design approach to product for the Digital Companion.

• Distributed Verification Services: a set of heterogeneous verification services providing a specific

type of content analytics (e.g. for text, image, video) or verification-relevant functionality (e.g.

emotional descriptors, social influence mapping). Some of these services are made available and

deployed by the SocialTruth consortium partners, while others are coming (either in open source

or not) from third-party service providers. Each service can be deployed at a different hosting

facility (e.g. different servers or clouds), hence there is no imposed centralization. All of them use

the same standard SocialTruth interfaces to allow them to be easily accessible, reusable and

interchangeable. The registrar of service providers and the services they offer is stored and

maintained in the blockchain.

• Expert Meta-Verification Engine(s): to combine verification results from various verification

services to compute a meta-score that reflects the credibility of the digital content under

consideration. It follows an open design, open algorithms and an expert-systems approach. It uses

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 26 of 82

open algorithms while most of its settings and weights (e.g. which verification services to prefer

or to avoid, with what priority, etc.) can optionally be configured through its standard web-service

interfaces.

• The SocialTruth blockchain: a distributed system of records with respect to the digital content

verification history. Since the complex web and social media landscape is characterised by several

competing content creators and distributors, each with their own motives, interests, strategies

and practices, the blockchain is an ideal tool to establish reputation and trust without the need of

a central authority or intermediary (thus also avoiding to centralize even more regulatory power

to the US Internet giants, such as Facebook or Google). Hence, a public distributed ledger provides

an auditable and immutable trail of verification actions and reputation scores. The blockchain will

store article identification information, article descriptors (e.g. hash codes for digital content

integrity), author identification information, verification and meta-verification scores, as well as

identification information for the verification services that have been used to calculate them. It

will also hold the registrar of verification service providers and the services they offer.

Functionally, these elements depend on one another and are logically pile-up as classical N-tier

architectural model that is comprised of a data layer, a business layer, and a presentation layer. The

bottom data layer of SocialTruth N-tier architecture model constitutes Distributed Verification Services

together with common interfaces providing access to the data. The middle layer, providing business logic

is the Expert Meta-Verification Engine. Finally, the presentation layer capabilities are provided by the

Digital Companion component. Each of these functional components is further composed of dedicated

modules that provide or facilitate the dedicated functionalities the specific component is intended to

provide.

2.7 The operational ecosystem
In order to address the scalability and the platform orchestration we recommend using Docker together

with Docker Swarm to maintain the ecosystem. The concept of using Docker Swarm in the SocialTruth

architecture is presented in Figure 4.

Figure 4 - Use of Docker Swarm in the SocialTruth architecture

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 27 of 82

The Docker Community is a forum for enthusiasts that use the virtual containers, micro services and

distributed applications. Moby is an open framework created by Docker to assemble specialized container

systems. It provides a “lego set” of dozens of standard components and a framework for assembling them

into custom platforms. Docker is an open source project that is aimed at simplifying deployment of an

allocation by means of containers. It allows for building an image with the application deployed inside. A

running instance of image is called a container. The image contains all the dependencies that the

applications need to run (e.g. operating system, runtime environment, specific system libraries, etc.). The

image can be easily run anywhere (on the variety of host operating systems) executing the application in

an isolated environment. Swarm is a Docker-native container orchestrator used to manage Docker

containers as a cluster of machines. Docker Swarm eases the deployment, organization, management and

scaling of Docker containers.

The containerisation differs from hardware virtualization in the way that it has higher performance

(containers do not emulate the entire computer architecture), lower resource consumption, and smaller

images (containers do not require a full operating system). Containers solve many problems of software

delivery such as runtime environment configuration, isolation, application management, and portability.

Using a single image one can run many containers (copies of the same application). At the same time

Docker enables rapid “diff” changes within the various software builds to verify the consistency of the

solution over the versions. An image is a stateless building block of the Docker system. From the functional

point of view an image has a layered structure. It means that images are easy to extend by adding

additional layers. For example, a J2SE application would have a basic image of the operating system (e.g.

Ubuntu). A JDK can be easily installed on top of it. Optionally the user can also add additional programs

such as Git. All modifications can be persisted afterwards as a new image. In case of Docker, it provides a

dedicated configuration language that allows for quick image definition.

2.8 The technical architecture
There are two disjoint and fundamentally different subsystems within the SocialTruth platform. The first

one is the p2p network composing the distributed ledger based on the blockchain technology. The second

is the distributed verification system following the microservice architecture style.

The EMVEs (Expert Meta-verification Engines) will act as clients composing the p2p network. The

technology stack of a single EMVE will include native libraries or software components that will facilitate

p2p network matters, such as nodes discovery, routing, node management, and bilateral communications.

Moreover, the EMVE will be facilitated with client component enabling communication with the

distributed verification system (Figure 5).

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 28 of 82

Figure 5 - SocialTruth technical architecture

P2P network of EMVEs

In order to implement the p2p network the EMVEs need to be facilitated with a dedicated software

component. This needs to handle such low-level networking aspects as routing, network elements

discovery, autonomous network management, etc. Apart from that mattes, also various elements

facilitating blockchain and distribute ledger need also be in place.

The EMVEs will also be facilitated with a client library or a dedicated API allowing communication with the

distributed verification system (Figure 6). This will need to transform the user request into a specific

backend service call. For example, whenever the user requests document verification, the EMVE will need

to call appropriate services that will verify images (if present in the document), text, run sentimental

analysis, and check existing databases for any information that will allow for discovering any negative or

positive symptoms judging the content of the document.

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 29 of 82

Figure 6 - SocialTruth technical architecture - single EMVE view

The EMVEs will need to implement the CQRS pattern (Command Query Responsibility Segregation) as the

operation of querying and indexing of the document will take considerably varied amounts of time.

Querying (or reading) the information of an already indexed document will be significantly faster, in

particular if the document verification will be based on the URL address (e.g. we may already know that

news published on a specific website is fake and results of analyses are already there in the SocialTruth

database). In that case the results could be returned in a simple request-response manner via the RESTful

API. On the other hand, the process of indexation (document ingestion) will require a different approach.

The uploaded documents need to be stored and analysed asynchronously by the services. In that case an

orchestration coordinated by the EMVE will be required. For example, it will need to start the analyses by

pointing the services to the data to be analysed, wait for the results, consolidate them into a single

information piece that will be consumed by the requestor. In the following scenario, a publish-subscribe

messaging system would be a better fit than the request-response approach.

The EMVEs will also be the elements which are closely interacting with the end-user. There are two main

cases where the user will be engaged. First, the operation when user queries the EMVE to verify a

particular document, news, post, etc., second, the situation where the user wants to add a new document

with the information about its credibility. Whenever the document has already been indexed and

annotated by someone else, the user may also express her or his opinion regarding it.

2.8.1 Distributed content verification system

The distributed verification system will be composed of several heterogeneous services that will be

functionally focused on a specific kind of context analysis, e.g. images, text, etc. (Figure 7). From the end-

user point of view these specific services should be visible as a monolithic system providing various

capabilities.

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 30 of 82

Figure 7 - SocialTruth technical architecture - distributed verification services view

API Gateway

In that sense an API Gateway pattern could be used. It would allow for hiding the microservices behind

the middle-layer that would be acting as a reverse proxy, handing the client requests, passing them to the

specific services, and returning the received results to the client.

Another benefit of adapting this pattern is the fact that we can offload the microservices authentication

burden directly onto a gateway. Moreover, we can abstract the microservice details (e.g. IP address)

making the gateway work as a reverse proxy, mapping the user request into a specific backend service

call. This will also be beneficial from the EMVE perspective, since it will decrease coupling – the EMVEs

will not have to know the location of each service. Instead, the EMVEs will use a single entry point. This

will also encourage development of a consistent API.

The services behind the gateway will be stateless entities that take the data in a predefined format and

return the result. The interaction between them will also be limited. Nonetheless, the services will need

several elements to facilitate their work. These include data storage, search engine, data processing,

publish-subscribe systems, etc.

Data storage

There will be a certain amount of data that will need to be processed, analysed, stored, and indexed.

Rather than sending back and forth the entire documents for verification, the data should be uploaded

once and later referenced using pointers (e.g. URL address). Therefore, adequate data storage is an

important element of the architecture.

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 31 of 82

Figure 8 - Concept of data storage in SocialTruth

From the overall description of the SocialTruth proposal emerges a general data model to be shared

among various modules comprising the platform. The first data entity is the document to be verified, the

second one is the author of this document. The third one is the reputation (verification) score. Finally, the

evaluation report also constitutes an important element (Figure 17).

The system should also provide capabilities to look up the previous verifications. These should be indexed

in various ways in order to avoid double checking of the same document. The most straightforward way

would be indexing the results by source (e.g. URL address).

Events-based communication

Once the data is uploaded the services can process it. Usually, it will take some time. Therefore, instead

of periodically pooling the services for current state, an event-based publish-subscribe system would be

a better fit in such scenarios. For example, a client requesting the verification of a specific image can

submit the request via standard API and subscribe to the event bus for updates. Once the service finishes

the processing it sends notification event via the event bus. Using such platforms as Apache Kafka it is

possible to guarantee fault tolerance and scalability of such mechanisms. For instance, if the network

connection fails or the client is down when a notification event is sent, the client is always capable of

receiving the event once it is back to normal state.

2.9 SocialTruth deployment options

2.9.1 Deployment Models

According to the SocialTruth Description of Action, deployment of the project outputs will be

characterized by decentralization. Each of verification services will be deployed at a different hosting

facility (e.g. different servers or clouds). All of them use the same standard SocialTruth interfaces to allow

them to be easily accessible, reusable and interchangeable.

For the deployment purposes of SocialTruth, the services will be hosted at the appropriate infrastructure

provided or on the cloud. Both solutions have their own advantages and disadvantages. The on-premises

solution requires a substantial investment to implement and dedicated people (IT experts) to maintain

and upgrade the infrastructure according to the needs of the SocialTruth platform. On the other hand,

the cloud-based solutions are generally considered more cost effective as the initial costs are much lower

and they usually implement a pay-as-you-use model. Using this model, the users of the cloud-based

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 32 of 82

solution are also relieved from the maintenance cost of the infrastructure. Apart from that, the cloud-

based solutions offer scalability as they can easily increase the required storage capacity and processing

power. In the long run, a cloud-based solution can be considered more cost-effective compared to on-

premises as it reduces the overall capital expenditure while maximizing efficiency and productivity.

Although the security of the cloud-based services has increased during the last years along with their

wider adoption, a careful selection of the appropriate deployment model is required in order to guarantee

the security concerns of the SocialTruth platform. The most common deployment models that can be used

for the SocialTruth platform are presented below.

2.9.2 Public cloud

A public cloud is a publicly accessible cloud environment owned by a third-party cloud provider. The IT

resources of a public cloud are generally offered to cloud consumers at a cost, usually by a pay-per-use

model or are commercialized via other avenues (such as advertisement). Public clouds provide a

convenient way to scale the required resources and the cloud provider is responsible for the creation and

on-going maintenance of the public cloud and its IT resources. Their main advantages and disadvantages

are presented below.

Advantages of public clouds:

• Scalability/Flexibility/Bursting

• Cost effective

• Easy to implement

• Continuous operation time

• 24/7 upkeep

Disadvantages of public clouds:

• Shared resources

• Operated by third party

• Unreliability

• Data Security and privacy

• Compromised reliability

2.9.3 Private cloud

A private cloud is owned by a single organization and it can be hosted either externally or on premises of

the user company. This deployment model is best suited for organizations that deal with sensitive data

and/or are required to uphold certain security standards by various regulations. Private clouds enable an

organization to use cloud computing technology as a means of centralizing access to IT resources by

different parts, locations, or departments of the organization. Their main advantages and disadvantages

are presented below.

Advantages of private clouds:

• High degree of security and level of control

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 33 of 82

• Ability to choose your resources (i.e. specialized hardware)

• High reliability and scalability

• Greater control over cloud infrastructure

Disadvantages of private clouds:

• Lack of elasticity and capacity to scale (bursts)

• Higher cost

• Requires a significant amount of engineering effort

2.9.4 Community cloud

A community cloud deployment model resembles a private one to a large extent; the only difference is

the set of users. While a private type implies that only one company owns the server, in the case of a

community one, several organizations with common interests share the infrastructure and related

resources. As the organizations have uniform security, privacy and performance requirements, this multi-

tenant data centre architecture helps companies achieve their business-specific objectives. That is why a

community model is particularly suited for organizations that work on joint projects. In that case, a

centralized cloud facilitates project development, management and implementation. Also, the costs are

shared across all users. Community cloud can exist either on-premise or off-premise and can be owned

either by a third-party provider or shared by the organizations themselves. Their main advantages and

disadvantages are presented below.

Advantages of Community cloud:

• Cost reduction

• Improved security, privacy and reliability

• Ease of data sharing and collaboration

Disadvantages of Community cloud:

• Higher cost than that of a public one

• Sharing of fixed storage and bandwidth capacity

• It is not widespread so far

2.9.5 Hybrid cloud

A hybrid cloud is a cloud environment comprised of two or more different cloud deployment models.

Advantages of Hybrid cloud:

• Cost effective

• Scalability/Flexibility

• Balance of convenience and security

Disadvantages:

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 34 of 82

• Same disadvantages as the public cloud

The comparison of the above cloud solutions can be summarized in the Table 1.

Table 1 - Summary of cloud deployment parameters

Public Private Community Hybrid

Ease of setup and
use

Easy Requires IT
proficiency

Requires IT
proficiency

Requires IT proficiency

Data security and
privacy

Low High Comparatively
high

High

Data control Little to
none

High Comparatively
high

Comparatively high

Reliability Vulnerable High Comparatively
high

High

Scalability and
flexibility

High High Fixed capacity High

Cost-effectiveness The
cheapest
one

Cost-intensive,
the most
expensive one

Cost is shared
among community
members

Cheaper than a
private model but
more costly than a
public one

Demand for in-
house hardware

No Depends Depends Depends

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 35 of 82

3 Integration aspects
Today, the majority of modern apps or services are RESTful APIs and use API definitions to facilitate

communications between them. APIs are especially suited for microservices or serverless architectures

with dozens or hundreds of mutually interacting microservices/functions. However there still exist some

legacy services using SOAP.

3.1 API to QWANT solutions
APIs and result formats from QWANT are presented in Figures 9-13.

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 36 of 82

Qwant API to get Web results

Figure 9 - Qwant API to get Web results

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 37 of 82

Qwant API to get news results

Figure 10- Qwant API to get news results

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 38 of 82

Qwant API to get images results

Figure 11 - Qwant API to get images results

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 39 of 82

Qwant API to get video results

Figure 12 - Qwant API to get video results

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 40 of 82

Qwant API to get social (tweets) results

Figure 13 - Qwant API to get social (tweets) results

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 41 of 82

3.2 API to ESF solutions
Cogito® 14 is the last version of Cogito published by Cogito Labs which is a software that bases its cognitive

capabilities on artificial intelligence algorithms that mimic the human ability to think at the speed of

current technologies. Cogito® is made up of the following components presented in Figure 14:

• Cogito® Discover, is a powerful and scalable semantic content enrichment,
categorization, entity extraction and text analytics software that recognizes and
identifies relevant items of information hidden in text and enriches document
metadata.
It embeds syntactical, statistical, taxonomy-based and information extraction
engines and supports many languages, enabling it to power high-throughput
extraction applications across a wide range of use cases and geographies.

• Cogito® Studio Express, is a development environment that allows creating
vertical thesaurus or an ontology to perform extraction and test the quality of a
semantic model.

• Cogito® Studio, is a fully integrated development environment for building and
deploying custom cognitive computing and AI-based applications, based on
the Cogito Technology. As the command centre for the Cogito-powered
deployments, Cogito Studio helps organizations and developers assert their
business priorities while creating unique semantic-powered solutions for robotic
process automation and information intelligence.

Figure 14 - Cogito components

• Cogito® Intelligence API Cogito Intelligence API is a server-side web application
which performs semantic analyses of unstructured text documents written in
English. Thanks to its underlying semantic engine, which runs on Expert System
Cogito technology and is enriched with Intelligence domain-specific contents, the
application provides full semantic processing features.

https://www.expertsystem.com/cogito/

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 42 of 82

The service is accessible as an Application Programming Interface (API) and is distributed both as an “on-

premises” web service installation and as a Java library (jar file) which can be integrated with third-party

client applications (Figure 15). The system receives plain text (up to 100KB in size) containing unstructured

information in input and returns text documents enriched with semantic structured metadata in order to

give value and emphasis to the contents.

Figure 15 - Cogito Intelligence API

Currently, the application offers several analytic features:

• Content categorization with 5 vertical taxonomies (Intelligence, Crime, Cyber Crime, Geo,

Emotions)

• Named Entity extraction (people, organizations and places)

• Text mining of entities (domain-specific, semantic reasoning and inferential entities)

• Relationships extraction

• Document tagging (summary and main elements)

• Fact mining

• Writeprint

An optional metadata section allows users to tag document analysis with extra data, which is forwarded

“as is” from the analysis request to the response. Metadata can be used to tag analysis with

supplementary data, which may be useful for subsequent client-side response processing (i.e. content

author, source, publishing or acquisition date, etc.).

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 43 of 82

3.2.1 Integration

3.2.1.1. Cogito Discover

Cogito Discover is easily scalable for the number of documents that must be analysed daily and for the

estimated maximum size of the global archive to ensure optimal performance.

The entry level configuration provides analysis for up to 10,000 documents per day, including the process

of semantic analysis and information extraction (ETL) for each.

Entry Level Configuration

Hardware requirements Software requirements

Hardware requirements depend on the

distribution of the daily load of documents to be

analysed; the base configuration (10,000

documents analysed daily) requires a quad-core

server with the latest generation 8 GB of RAM.

Available in both Windows and Linux

environments, both for 32 and 64 bits.

Developed in C++ and may be integrated into most

of the newest production environments. Cogito

Intelligence API

The Cogito Discover architecture is:

• Adaptable for different operational contexts.

• Reliable and scalable, both in number of users and for the number of documents.

• Easily integrated into existing systems.

• Expanded with additional modules or third-party software.

Scalability

If you require more execution power than the one defined as entry level, you can create any number of

servers with the same configuration of Cogito Discover (we can call each of them Discover Analysis Unit)

and then use a proxy in front of them to load balance the incoming requests (we can call this

server Discover Control Unit). All client requests are sent to the Control Unit which will in turn dispatch

them to a free server. When there are no "free slots" left on any server managed by the proxy (the proxy

knows the number of CPU cores of each server), a round-robin policy is applied.

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 44 of 82

Figure 16 - Relation between Cogito Discover Proxy and other Cogito components

As presented in Figure 16, Cogito Discover comes with a Cogito Discover Proxy component you can use

for this purpose (the Windows service is called "Cogito Discover Essex Proxy"). The Discover Admin web

page allows you to configure network addresses and ports for your analysis nodes.

Connectors

The inherent format used by Cogito Discover is an XML representation called: Cogito eXchange format

(COGX). The Cogito eXchange format is an XML-based language representation of the new Expert System

document data model. The details of this format can be found in Expert System’s documentation “Cogito

COGX Format.pdf”.

Cogito Discover manages also the main text formats (Microsoft Office documents such as DOC, DOCX, XLS,

XLSX, PPT, PPTX, PDF, HTML, TXT, XML, etc.), as well as major source types (file system folders, Internet,

Intranet, RSS). It is also integrated with specific connectors to acquire data from sources such as social

media, news providers and document management systems already in use by the customer.

Through the use of dedicated connectors, Discover also enables analysis of text from the most common

relational databases or other applications.

API

Cogito® 14 provides a new Web Service API based on the REST (Representational State Transfer) design

model.

By default the REST API is available at the following URL address:

• http://localhost:8091/rest-api for Cogito® Discover

• http://localhost:8090/rest-api for Cogito® Studio Express

REST defines a set of architectural principles that can be used to design Web services that focus on a

system's resources, including how resource states are addressed and transferred over HTTP through a

http://localhost:8091/rest-api
http://localhost:8090/rest-api

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 45 of 82

wide range of clients written in different languages. If assessed by the number of Web services that use

it, in the last few years alone REST has emerged as a predominant Web service design model. In fact, REST

has had such an immense impact on the Web that it has mostly displaced SOAP- and WSDL-based interface

design because it is a much simpler style to use.

A specific implementation of a REST Web service follows four basic design principles:

• Uses HTTP methods explicitly

• Be stateless

• Exposes directory structure-like URIs

• Transfers XML, JavaScript Object Notation (JSON), or both

REST is an architectural style based on resources and representations of these resources. As our focus

here is in a Web API, the resources are actually called "Web resources". In the REST APIs, Web resources

are mainly either collection resources (e.g. list of users), collection member resources (e.g. one of the

users in the list) or processing resources (e.g. resource called by an online calculator when form data is

submitted in order to get results). For example:

• Collection resource: http://www.mywebsite.com/users

• Collection member resource: http://www.mywebsite.com/users/johndoe

• Processing resource: http://www.myonlinecalc.com/calculate

A REST API uses HTTP verbs to create, modify, use, or delete these resources. The HTTP verbs are GET,

POST, PUT, and DELETE.

For more details on Cogito Discover API please refer to Expert System’s documentation “Cogito REST

API.pdf” or use the Postman collection “Cogito Discover.postman_environment.json”.

3.2.1.1. Cogito Intelligence API

The web service version of Cogito Intelligence API can be accessed by either SOAP or REST interface. The

two service interfaces coexist under the same web service distribution and differ as outlined in the table

below:

Protocol SOAP REST

Serialization format XML XML/JSON

Functionalities selection time None Request phase

Functionalities per analysis Always complete one per request (“Full” feature also available)

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 46 of 82

For the SOAP service, the all functionalities are always enabled. All functionalities are included within the

same analysis response to the client, for each analysis request; in this way the customers get a complete

analysis of the text with just one single client application request.

For the REST service, a feature analysis corresponds to each exposed endpoint. For each text sent by the

client, an analytical functionality is implicitly enabled, and the result of the analysis is delivered to the

customer, thus providing a greater modularity in the selection of functionalities. A “full” analysis feature

is also available, thus allowing customers to obtain a fully featured analysis of documents with a single

analysis request.

As for the library distribution for integration into third-party Java applications, the output format can be

either a data-structure JSON or XML String serialization, and the selection of analytical functionalities is

allowed programmatically. The library consists of a “jar” archive that can be imported into applications

together with other libraries from which the same Cogito Intelligence API library depends.

The Installation Guide is distributed along with Cogito Intelligence API and a Postman collection “Cogito

Intelligence API.postman_collection.json” is available to help users requesting the API.

3.3 API to Thales solutions

3.3.1 Attribute-based Access Control

Thales has developed a unique solution of fine grained access control (AC) via Attribute Based Access

Control (ABAC) using Blockchain (BC). ABAC is a logical AC model that controls access to objects by

evaluating rules against the attributes of entities (subject and object), operations, and the environment

relevant to a request. It enables more precise AC by allowing for a higher number of discrete inputs into

an AC decision and thereby providing a larger set of possible combinations of those variables to reflect a

larger and more definitive set of possible rules to express policies, which are limited only by the

computational language and the richness of the available attributes. Using ABAC, the access decisions can

change between requests simply by altering attribute values, without requiring changes to the

subject/object relationships defining the underlying rule sets.

Thales Attribute based Access Control via BC is performed following two steps. The first step consists of

the registration of all devices in the blockchain via smart contracts. The second step consists of the request

to access to a resource managed by the blockchain. In the first step, every entity managed by the

blockchain must create a smart contract (SC) to register. In this smart contract, information will be

specified namely the identity of the entity, its attributes (in the ABAC) and access rules, address of its

TrustStore, as well as a digital signature to ensure the authenticity of the data in this smart contract. This

step requires the creation of a transaction each time an entity joins the network or updates its identity

information. In the second step, the entity is granted access once its attributes and access rules have been

checked. In terms of transaction cost, only the first step requires the creation of a transaction; while the

second step does not require a new transaction.

In the following, we illustrate the main functionalities of the ABAC system in Figure 17. At the step (1) the

user requests access to a resource through a “zero-knowledge” proof authentication mechanism based

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 47 of 82

on Challenge/Response. After receiving the request, the resource will send a challenge (2). In step (3), the

user will sign the challenge. Then, it will send the signed challenge and the address of the SC (step 4).

Steps 1, 2, 3, and 4 are also the result of identity and authentication check done in the previous check of

authentication.

The resource will request the address of the owner of the SC (5, 6, 7) in the register. This register consists

of a new smart contract with an associative table having as keys the Ethereum addresses of entities, and

as variables Ethereum addresses of associated SCs.

 At step (8), the resource will compare between the address of the signed challenge and the address of

the owner of the SC. Then there should be verification of the smart contract of the resource whether it

has been certified by the authority (9, 10, 11, 12) as the consensus here is Proof of Authority. After that,

the resource will verify whether the UE or User is authorized or not. During an access request, the function

isAuthorized verifies at each time if the requester has an ISC certified by a trusted entity.

During the creation of the Smart Contract, the owner will define the Ethereum address of the TrustStore

including all the trusted entities authorized to sign the SC. Concretely, this TrustStore is a smart contract

containing a table of Ethereum addresses and offer the possibility, via the developed functions, to add, to

delete and to verify an address.

Figure 17 - Architecture of Access Request between User/Resource via Blockchain Network.

The ABAC system offers to every entity to publish or modify attributes of their identities and/or its access

rules in the blockchain. Moreover, entities could access/retrieve access rules of other entities from the

blockchain; and could retrieve signatures associated to an identity. A user or client could sign a message

with its private key of its Ethereum account. Moreover, all data stored in the Ethereum BC could not be

modified without authorization. Also, attributes and access rules of a smart contract could only be

modified by its owner (owner of the smart contract).

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 48 of 82

3.3.2 Description of the API and the interface

We present the following requirements and specifications related to the smart contract.

• The identity of an entity is represented by a smart contract. Every SC has a function addAttribute.

• Every smart contract (SC) has a function sign.

• A function sign has a parameter to specify its expiration date.

• Every SC has a function isAuthorized. This function takes into parameter the address of the SC and
returns a Boolean in order to indicate whether the owner of that SC is authorized to access or not.

• Every SC has a function addRule in order to publish/modify their access rules in the blockchain.
The resource could add attributes, add access rules and also sign the SC. The client also could sign a

message with a private key of its Ethereum account. Attributes and access rules of a SC could be modified

only by its owner. The ABAC system allows to pay only the registration and the modification of the SC. The

consultation of the attributes, access rules or the call to the function isAuthorized does not incur a new

transaction.

Figure 18: Simplified entity-relation diagram of an identity SC.

In Figure 18, we present a simple model (Entity-Relation Diagram) of an identity SC (ISC). Since every ISC

has one owner, this model proposes a variable owner in the smart contract ISC. This variable refers to the

Ethereum address of the owner. In order to have a valid transaction, this later should be signed with the

private key associated to the Ethereum address of the owner.

Regarding the access rules, our model defines a new data structure rule with the following variables:

• idRule: an integer not signed that attributes to each rule a unique identifier.

• ruleTypeAddress: an Ehereum address corresponding to a type of rule.

• attributeType: the type of attribute.

• attributeValue: value of the attribute.

A modular architecture has been established in order to add type of rules easily. For the sake of simplicity,

we present here three examples of the types of rules:

• MatchRule: type of rule returning true only when two given attributes are equal.

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 49 of 82

• TimeGreaterThanRule: type of rule returning true only when the actual time is superior than a
given time in parameter.

• TimeLess ThanRule: type of rule returning true only when the actual time is less than the given
time in parameter.

When a SC is published in the blockchain, it is necessary to guarantee to the other entities present in the

network that all the information contained in the SC is correct. Hence, a signature mechanism is used.

3.4 Interoperability/Integration aspects
Due to the early stage in the project and because not all tasks involved in development have started yet,

this section is not complete at the moment. This section will be more detailed in D2.3.

In order to deliver, in WP5, the different elements to be integrated for building the different use cases,

we have to detail some integration principles in order to anticipate the usual integration issues when

different actors are involved.

The first principle will be about the software integration, it means to ensure code quality, test the

developed product and to track the changes made by different developers. The consortium has to define,

for example, the coding standards to follow, to ensure that the code is readable and understandable by

different developers involved in the process. Repositories, where the different versions committed by the

developers are stored, are used to track the changes in software.

The second principle will be about components integration. In this case, this aspect will detail how to

choose the standards for the new components and how to take into account the legacy components.

3.5 Blockchain aspects

3.5.1 SocialTruth Blockchain implementation

To answer trust requirements for SocialTruth results storage, SocialTruth has to select a specific

Blockchain implementation among existing ones. This implementation will be reused as-is or with some

modifications if needed. This implementation will also be used by the specific Thales access control

besolution (based on ABAC approach) using the Blockchain described in this chapter. As of this day, the

solution uses Ethereum implementation but will have to use SocialTruth Blockchain.

The Blockchain integration will depend on the selected blockchain. The main aspects to select one are:

• The deployment model,

• Smartcontracts or not,

• Database for storing the transaction contents,

• Data Confidentiality,

• Mode de deployment,

• Nodes deployment.

The justification for the selection of the Blockchain implementation will be described in SocialTruth

deliverable D4.1 (M17). For now, various choices were already made:

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 50 of 82

1. The deployment model, the most appropriate solution seems to be a consortium blockchain (a

deployment limited to the consortium).

2. Due to the transaction complexity, a Smartcontracts is mandatory.

3. Due to the volume of data and the GDPR rules, an external database has to be used but with

access control by the Blockchain.

4. For the Data Confidentiality, we have not identified specific constraints.

5. The nodes (access points for the Blockchain) deployment will depend on the Blockchain

implementation and, depending on the final architecture, a cloud deployment could be envisaged

(all Blockchain implementations have this possibility)

As of this day, Thales is investigating various implementations, which are:

• Multichain2

• Hyperledger fabric (mature solution without risks)3

• Ethereum (fallback solution)4

3.5.2 Blockchain interface

The interface with the Blockchain will be based on smartcontract allowing the following actions:

Read:

Input:

• Content signature and type of content: identifying the content itself (to be defined).

• URL of the content, the declared author(s),

Return:

• SocialTruth score (global result).

• SocialTruth details score (details about the different verification services applied).

• Score history (list of different score resulting of different evaluations).

• Context of the content(s) (training, journalism, advertisement, …).

Write:

Input:

• Requester identifier (who want to perform an evaluation)

• Content signature and type of content: identifying the content itself (to be defined).

• URL of the content, the declared author(s),

• Context of the content(s) (training, journalism, advertisement, …)

• SocialTruth score (global result).

2 https://www.multichain.com/
3 https://www.hyperledger.org/projects/fabric
4 https://www.ethereum.org/

https://www.multichain.com/
https://www.hyperledger.org/projects/fabric
https://www.ethereum.org/

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 51 of 82

• SocialTruth details score (details about the different verification services applied).

• Score history (list of different score resulting of different evaluations).

Return:

• Error code if error

Update:

Input:

• Requester identifier (who want to perform an evaluation)

• Content signature and type of content: identifying the content itself (to be defined).

• The URL of content, the declared author(s),

• Context of the content(s) (training, journalism, advertisement, …)

• SocialTruth score (global result).

• SocialTruth details score (details about the different verification services applied).

• Score history (list of different score resulting of different evaluations).

Return:

• Error code if error

This interface description is a very preliminary definition of the interface and will be update as soon as the

final architecture will be consolidated.

3.6 Containers/dockerization
The increasing popularity of the container technology can be attributed to the release of Docker in 2013

along with offering a high-level abstraction of the isolated execution environments.

Docker is an open source project that is aimed at simplifying deployment of an allocation by means of

containers. It allows for building an image with the application deployed inside. A running instance of an

image is called a container. The image contains all the dependencies that the application needs to run

(e.g. operating system, runtime environment, specific system libraries, etc.). The image can be easily run

anywhere (on the variety of host operating systems) executing the application in an isolated environment.

The containerisation differs from hardware virtualization in the way that it has higher performance

(containers do not emulate the entire computer architecture), lower resource consumption, and smaller

images (containers do not require a full operating system).

From the SocialTruth perspective, in particular in the light of the architecture-related challenges listed in

section 2.2, use of containers will bring significant benefits into the process of SocialTruth platform

development and deployment. Service-oriented or microservices approach to the architecture design

combined with containerized applications eases scalability. Other advantages of the container technology

also include simple dependency management and application versioning, lightweight deployment, and

solving such challenges as runtime environment configuration, isolation, and portability. In addition, the

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 52 of 82

Docker images can be easily run anywhere (on the variety of host operating systems) executing the

application in an isolated environment. This enhances the capabilities to ease the adoption of the final

solution by the future end-users.

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 53 of 82

4 Security and privacy aspects

4.1 Authentication and authorization
The authentication and authorization in SoA or a microservices-based architecture imposes several

challenges in comparison to the monolithic architecture, where implementation of the authentication and

authorization mechanisms is straightforward. Usually in such architectures a dedicated security

component provides AA implementation. Authenticating user access and authorizing their actions

requested to application is considered as a single process. Designing an architecture based on

microservices imposes additional challenges, from which one of the most important is implementation of

secure and efficient authentication and authorization mechanisms with preservation of an overall

flexibility of microservices:

• Each service in a microservice-based approach is considered as separate process and requires

separate implementation of business logic, therefore access to each microservice needs to be

authenticated and authorized independently,

• Global logic implemented independently in each microservice (repeated in each micro-

application) brings challenges in the system maintenance, implementation of changes and

updates,

• Challenging AA implementation in more complex scenarios, when the microservice-based

application is connected with 3rd party solutions, extended by adding new services or in the case

where multiple microservice applications start accessing one another.

Taking into account the abovementioned challenges and the overall architecture of the SocialTruth

platform, at this stage of the project we consider three main options for the implementation of AA

mechanisms in the microservices environment:

1) Distributed session management – implementation of a basic distributed session management in

the microservice context may violate its fundamental assumption about statelessness. However,

there are several approaches that can be effectively used to manage a distributed session:

a. “sticky” authentication session (session affinity) - all user requests are sent and managed

by an authentication server that handles the first request corresponding to a given user

and ensures that session data is always correct for this user, or

b. session replication - each instance saves all session data and synchronizes through the

network,

c. centralized session storage – when user accesses a microservice, user data can be

obtained by other microservices from shared session storage

However, each of those approaches has drawbacks - sticky session requires a load balancer and

the actual session data can be lost if the user was to be shifted to another server, session

replication brings issues related to the network bandwidth usage (continuous synchronization),

while centralized session storage requires additional security mechanisms to protect the shared

sessions.

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 54 of 82

2) Client token and token with the API gateway - in a basic implementation, the token holds the

information on user identity and is sent to the server at each user request. This allows server to

determine the identity of a visitor and the legitimacy of his request. Tokens are held by the users

themselves in the form of browser cookies, therefore the server does not save the status of the

users. The content of the token is based on the predefined schema/template and needs to be

encrypted to avoid falsification by the requester or the third party. The extension of the basic

client token approach is hiding microservices behind the API gateway providing entrance of the

external requests to the system, translating basic transparent client tokens into opaque tokens.

3) SSO – Single Sign-On - with the use of a single sign-on server that mediates between end-users

and the accessed resource server. To implement a single sign-on in a microservice-based

architecture, additional identity and access management microservice needs to be used. This

microservice is responsible for the generation of SSO token for the user, and for validating this

token received from the resource server after the user’s request. The drawback of this solution is

the excessive network traffic related to the communication between the user and the resource

server, the user and the SSO server, and the resource server and the SSO server. In addition,

access related functionalities in microservices environment can be realized through mutual

SSL/TLS certificate-based authentication, while in the scenarios requiring an access of 3rd party

applications to the microservices - using an API token approach or an Oath open reference

architecture based on open standards.

4.2 Privacy by design and by default (GDPR), security by design, link to D7.1
One of the objectives of this document is to ensure, in the design phase of the architecture, the respect

of the “security by design” and the “privacy by design” principles. Article 25 of EU General Data Protection

Regulation (“Data protection by design and by default”) provides that “the controller shall, both at the

time of the determination of the means for processing and at the time of the processing itself, implement

appropriate technical and organisational measures, such as pseudonymisation, which are designed to

implement data-protection principles, such as data minimisation, in an effective manner and to integrate

the necessary safeguards into the processing in order to meet the requirements of this Regulation and

protect the rights of data subjects.”

The provisions contained in article 25 make it clear that the approach of the GDPR is centered on risk

assessment (risk based approach), which determines the extent of responsibility of the data controller

taking into account the nature, of the scope, the context and the purpose of the processing, as well as the

likelihood and severity of the risks for the rights and freedoms of users. That said, to better understand

these principles it is appropriate to also consider the content of clauses 75 and 76 of the GDPR, which

include also the definition of risk. In particular clause 76 reports that "The likelihood and severity of the

risk to the rights of the data subject should be determined by reference to the nature, scope, context and

purposes of the processing. Risk should be evaluated on the basis of an objective assessment, which is

established whether the data processing operations involve a risk or a high risk "

The privacy by design obligation is based on risk assessment, as well as other obligations (e.g. a notification

to the national guarantors), for which the risk inherent in data processing must be assessed. This

evaluation should be done at the time of system design, so before the treatment begins. Clearly, the type

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 55 of 82

of data processed must also be considered, so that in the presence of a treatment involving child data the

obligations must be more stringent, in consideration of the fact that the risk is greater.

The risk-based approach means that the state of the technology must be taken into account, so the

treatment must be adapted over time.

The cardinal principles of privacy by design are the following:

• To prevent and not to correct - problems must be assessed in the design phase, and the

architecture must prevent the occurrence of risks;

• privacy as the default setting (for example, it must not be mandatory to fill in a field of a form in

which the provision of data is optional);

• privacy must be embedded in the project (for example, the use of pseudonymisation techniques

or data minimization);

• maximum functionality, in order to respect all the needs (rejecting false dichotomies such as more

privacy = less security);

• security throughout the product or service cycle;

• visibility and transparency of data processing, i.e. all the operational phases must be transparent

to ensure that the data protection is verifiable;

• user-centered, therefore assuming respect for rights, timely and clear responses to the user’s

requests for access.

Moreover, Article 32 of the GDPR (Security of processing) establishes some fundamental principles. In

particular, the security measures must be prepared "taking into account the state of the art and the costs

of implementation, as well as the nature, object, context and purpose of the processing, as well as the

risk of various probabilities and severity for the rights and freedoms of individuals ".

The security measures, therefore, must be adequate, imposing not an obligation of result, but an

obligation of means, so that the measures are reasonably satisfactory in the light of knowledge and

practices.

In fact, security does not only concern the IT aspect of data processing, but also the organizational aspect

to cover events such as the removal or loss of documents. The security measures, therefore, must

guarantee that:

• the data can be consulted, modified, disclosed or deleted only by the persons authorized to do so

(and that such persons act only within the authority granted to them);

• the processed data are accurate and complete in relation to the reason why you are processing

it;

• the data remain accessible and usable, that is, in the event of accidental loss, modification or

destruction, you must be able to recover them and prevent damage to the persons concerned,

preparing an appropriate business continuity plan.

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 56 of 82

The security principle, therefore, provides for the obligation of confidentiality, integrity and availability of

data.

In deliverable D7.1, besides providing detailed information on the application of ethical standards and

guidelines of Horizon2020 within the SocialTruth consortium, the general principles and procedures

related to data protection have been outlined, so that SocialTruth can guarantee that all legal provisions

of personal data and location-aware services will be respected during all the phases of the project:

● SocialTruth will minimize the collection of and processing of personal data and will use
anonymization techniques to remove the ability to identify individuals wherever possible,
depending on the nature of experiment.

● Where de-identifying is not possible or desired, SocialTruth will protect all data collected that can
be attributed or traced to an individual. It will store such data only with consent.

● Based on consent, personalized data can be transferred into anonymized data records for wider
dissemination after the project lifetime and for further exploitation.

● Use of secure data storage, encrypted transfer of data over the capturing channels, controlled
and auditable access for different classes of data.

● Obscuring/removing user identities at the source of experimental data generation to prevent
direct user tracing.

● Obscure the location as much as possible and limit user tracking through correlation of de-
personalized data based on its location.

● Personal data will be processed in compliance with the relevant legal regulations. Personal data
will be collected on a strictly need-to-know basis, solely for the purposes of the SocialTruth project
and will be destroyed when no longer needed for that purpose. Technical and operational
measures will be implemented to ensure that users will be able to access, rectify, cancel and
oppose processing and storage of their personal data.

It is anyway evident that one of the guiding principles of article 32 of the GDPR is the demanding that IT

security be brought up to the level of "state of the art". It is then necessary to understand what exactly

can be considered “state of the art” in IT security. In this matter, ENISA and TeleTrusT - IT Security

Association Germany, have recently published a guideline document 5 intended to provide companies,

providers (manufacturers, service providers) alike with assistance in determining the "state of the art"

within the meaning of the IT security legislation. Based on ENISA and TeleTrusT document, the “state of

the art" technology level is situated between the more innovative “existing scientific knowledge and

research" technology level and the more established “generally accepted rules of technology" level.

These three states of technology are flanked by the categories “general recognition" and “proven in

practice." The classification of the laws requires a clear distinction between subjective and objective

criteria. The “state of the art" criterion is purely objective. The subjective aspects consider the laws in the

event of an offence; however, they do not concern the definition of the “state of the art" itself. As a result,

the “state of the art" can be described as the procedures, equipment or operating methods available in

5https://www.teletrust.de/fileadmin/docs/fachgruppen/2019-
04_TeleTrusT_Guideline_State_of_the_art_in_IT_security_ENG.pdf

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 57 of 82

the trade in goods and services for which the application thereof is most effective in achieving the

respective legal protection objectives. In short it can be said that the “state of the art" describes a subject’s

best performance available on the market to achieve an object. The subject is the IT security measure; the

object is the statutory IT security objective.

With regard to the “state of the art” guidelines for the implementation of the security measures in the

development of applications, there is no doubt that one of the most authoritative reference points is

represented by OWASP: The Open Web Application Security Project is an open-project source for Web

application security. The OWASP also offers guides with tips on creating secure Internet applications, and

directions for the tests they should be submitted to. That said, to ensure the state of the art IT security

principles and techniques are adopted, during the design and the implementation of the SocialTruth

platform, Security-by-Design principles defined by OWASP (Open Web Application Security Project) will

be followed.6

The secure design principles contained in OWASP Dev Guide Principles of Security Engineering include:

• Defense in Depth: a security principle where single points of complete compromise are

eliminated or mitigated by the incorporation of a series or multiple layers of security safeguards

and risk-mitigation countermeasures. Have diverse defensive strategies, so that if one layer of

defense turns out to be inadequate, another layer of defense will hopefully prevent a full breach;

• Fail-Safe: aims to maintain confidentiality, integrity and availability by defaulting to a secure state,

rapid recovery of software resiliency upon design or implementation failure. In the context of

software security, fail-secure is commonly used interchangeably with fail-safe, which comes from

physical security terminology;

• Least Privilege: a person or process is given only the minimum level of access rights (privileges)

that is necessary for that person or process to complete an assigned operation. This right must be

given only for a minimum amount of time that is necessary to complete the operation: proper

granularity of privileges and permissions should be established;

• Separation of Duties: if the successful completion of a single task is dependent upon two or more

conditions that need to be met, just one of the conditions will not be sufficient for the completion

of the task;

• Economy of Mechanism: the number of vulnerabilities increases with the complexity of the

software architectural design and the number of lines of code. By keeping the software design

and implementation details simple, the attackability or the attack surface of the software is

reduced;

• Complete Mediation: ensures that authority is not circumvented in subsequent requests of an

object by a subject, by checking for authorization (rights and privileges) upon every request for

the object;

• Open Design: the implementation details of the design should be independent of the design itself,

which can remain open, unlike in the case of security by obscurity wherein the security of the

software is dependent upon the obscuring of the design itself;

6 https://www.owasp.org/index.php/OWASP_Secure_Application_Design_Project

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 58 of 82

• Least Common Mechanism: the least common mechanisms principle disallows the sharing of

mechanisms that are common to more than one user or process, if the users and processes are

at a different levels of privilege;

• Psychological acceptability: ensures that the security functionality is easy to use and at the same

time transparent to the user. Ease-of-use and transparency are essential requirements for this

security principle to be effective;

• Weakest Link: resiliency of the software against hacking attempts will depend heavily on the

protection of its weakest components, be it the code, service or the interface;

• Leveraging Existing Components: ensures that the attack surface is not increased and no new

vulnerabilities are introduced by promoting the reuse of existing software components, code and

functionality.

Moreover, it will be appropriate to follow the “OWASP Checklist for Securing Application Design7” as a

guideline for the security aspects of the design. The checklist contains provisions regarding the following

aspects:

• Design:

o code Flow;

o authentication and access control mechanism;

o data access mechanism;

o centralized validation and interceptors;

• Architecture:

o Entry points;

o External integration;

• Configuration;

o External API’s used;

o Inbuilt security controls.

It will also be appropriate to use “Owasp Application Security Verification Standard v4.0.1 (March 2019)8

” to validate the implementation of the security requirements: the Application Security Verification

Standard is a list of application security requirements or tests that can be used by architects, developers,

testers, security professionals, tool vendors, and consumers to define, build, test and verify secure

applications, structured as following:

• Architecture, Design and Threat Modelling Requirements;

• Authentication Verification Requirements;

• Session Management Verification Requirements;

• Access Control Verification Requirements;

7 https://www.owasp.org/images/f/f7/Checklist_For_Design.pdf
8https://github.com/OWASP/ASVS/raw/master/4.0/OWASP%20Application%20Security%20Verification%20Standa
rd%204.0-en.pdf

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 59 of 82

• Validation, Sanitization and Encoding Verification Requirements;

• Stored Cryptography Verification Requirements;

• Error Handling and Logging Verification Requirements;

• Data Protection Verification Requirements;

• Communications Verification Requirements;

• Malicious Code Verification Requirements;

• Business Logic Verification Requirements;

• File and Resources Verification Requirements;

• API and Web Service Verification Requirements;

• Configuration Verification Requirements.

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 60 of 82

5 Socio-technical and human factors
In the frame of the social and human aspects described in detail in deliverable D2.1, with the purpose of

building engaging and user-centred services, this chapter aims at investigating the optimized Socialtruth’s

human-machine interfaces for targeted end-users, based on the use cases identified in Task 2.1, and on

current industrial and commercial best practices. Special focus is given on the psychological aspects of the

design, or in other words the way that these interfaces encourage and motivate specific actions or

behaviours.

This will represent the base for the future definition of the interface specifications; In fact, the proposed

HMIs will be proposed to test groups of end-users from the organizations of the SocialTruth partners

(ADNK, INFOC, DEASC), to assess alternative “look and feel” style options and provide guidelines to ensure

not only the aesthetic part but also usability, learnability, efficiency, intuitiveness, and user satisfaction

aspects of the provided solutions, to be included in deliverable D2.3.

5.1 Introduction
In the following sections of this introductory chapter, the basic recommendations for effective web

interface design are recalled, based on psychology-driven concepts found in literature. The Gestalt

principles used to establish visual hierarchy within web interfaces are also presented. Finally, guidelines

regarding the brand cultivation and the use of colours are proposed.

After this, the document proceeds with investigating possible approaches to the development of human-

machine interfaces for SocialTruth, tailored to the use-cases identified in the project proposal and further

defined in D2.1 Chapter 6 “Socio-technical & Human Aspects”, namely:

• use case 1: “Checking sources in the production process”;

• use case 2: “Digital companion for content verification”;

• use case 3: “Search engine rankings & advertising prevention for fraudulent sites”;

• use case 4: External sources reliability check in the educational domain”.

For each use case, guidelines regarding the interface’s look&feel are proposed, and the interface design

affordances are translated into preliminary functionality requirements, to be further developed, validated

and adjusted as the project proceeds.

5.1.1 Basic usability recommendations

As reported in the relation “The Psychology Behind Web Design” by Sarosha Imtiaz, expert in data-driven

design & marketing strategies at the Department of Life Sciences of the McMaster University (Hamilton,

Ontario, Canada) (Imtiaz, 2016), choosing the right features for interfaces and websites is a key point for

their success and for assuring a pleasant and satisfying user experience. Well-known and general usability

recommendations and guidelines represent solid foundations to base the development of an effective

interface on. As reported by Imtiaz, by adopting psychology-based design tactics, website owners can

provide an engaging experience for their users (Elder & Krishna, 2012). A website should accurately depict

its products to encourage mental interaction from their visitors (Verhagen, Boter, & Adelaar, 2010). Once

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 61 of 82

users can envision themselves interacting with a product, they become more likely to purchase it (Elder

& Krishna, 2012).

The afore-mentioned psychology-based design tactics are mainly reported to be the following (Fadeyev,

s.d.):

Table 2 - Psychology-based design tactics

FEATURE DESCRIPTION

clearness

The main purpose of a user interface design is to enable people to interact

with the system or tool by communicating its meaning and functions. It is

essential that people understand how the application works and where to

click. It is mandatory to prevent people from getting frustrated or confused.

example: provide tooltips on buttons, popping up to explain the button’s

function

conciseness

Clearness requires explanations, but too much explanation makes the

interface “heavy”. People will not bother spending too much time trying to

understand how the application works and reading instructions. Thus,

clearness must go hand in hand with conciseness.

example: label buttons with only one word

familiarity

The application has to appear familiar to the user, so that he or she

intuitively understands how it works. This can be achieved by making the

application look like something that users already know.

example: tabs on folders are something every digital user can recognise.

People immediately understand that clicking on a tab will allow navigating

that particular section and that the rest of the tabs will remain there.

responsiveness

The interface should work fast: people get easily frustrated when waiting

for content to load. If the content needs time to load, at least it is essential

that the interface loads quickly (even if the content is yet to catch up) and

provides some form of feedback about what is happening.

example: buttons should display a ‘pressed’ state when users click on them,

a “loading…” pop up should show with a spinning wheel or a progress bar to

keep the user in the loop while the content loads

consistency

Interfaces should be internally consistent, so that the user can develop

usage patterns and recognize at a glance what the different buttons, tabs,

icons and other interface elements look like and what they do.

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 62 of 82

example: different versions of the same application, for example desktop

version vs. mobile version, should be consistent with each other

aesthetics

A good interface should be aesthetically pleasant and enjoyable, providing

a more satisfying user experience. The fashion and the look&feel should be

tailored to the specific audience.

example: tabs with rounded corners and buttons with subtle gradients and

pixel thin highlights look just fine

effectiveness

Interfaces are the thing that allows people to perform the functions of the

application.

The key point here is to understand what the user is trying to achieve and

let him/her easily accomplish the task instead of simply implementing

access to a list of features.

example: if a lot of users want to share some content from the application

to social media, provide an easy way (e.g. button) that immediately allows

them to do so

recovery

A good interface should allow users to handle mistakes, undo actions and

retrieve past information. Also, it should provide help to the user, rather

that cryptic error messages.

example: when someone navigates to a broken or nonexistent page, they

should get a helpful list of alternative destinations

5.1.2 Gestalt principles

The Gestalt principles are a set of principles in psychology to account for the observation that humans

naturally perceive objects as organized patterns. Human-machine interface designers can leverage human

psychology when designing layouts by using these principles to establish visual hierarchy (Demangeot &

Broderick, 2007).

As reported by Djamasbi et al. (Djamasbi, Siegel, & Tullis, 2011), visual hierarchy revolves around eight

aspects: size, contrast, similarity, symmetry, unity, grouping, style and colour:

Table 3 - Gestalt principles

GESTALT PRINCIPLE DESCRIPTION

size
Size is a primary technique to show dominance on a screen: bigger and

bolder objects are perceived as more prominent.

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 63 of 82

contrast

Contrast refers to the comparison between colours: high contrast refers to

colours that easily stand apart from each other while low contrast refers to

colours that do not.

similarity
Similarity refers to the perception of objects in relation to their size,

colour, proximity and shape compared to others.

symmetry
Visual symmetry is reported to help users remember content better, while

asymmetrical designs can focus interest and on a certain section or object.

unity

Unity refers to holding designs together both visually and conceptually.

This may include the overall colour and layout, as well as the arrangement

and content of information displayed on the screen.

grouping
Grouping refers to reducing the cognitive load on the user by providing

immediate separation of a group of elements from the rest of the page.

style Additional emphasis can be placed on one piece of information over
another by changing its style.

colours Colours are a powerful communication tool and can be used to invoke
action, influence one’s mood, or even cause physiological reactions.

The SocialTruth application is intended not as a stand-alone product, but rather as an integrated part of

existing environments (editorial board for journalists, web-browser for regular citizens, etc. based on the

identified use-cases). This puts additional requirements for the effectiveness of the proposed solution(s),

regarding the coherence between the application and the hosting environment. The integration should

look natural and discreet, fostering a habits-driven attitude of the user towards it, just as if the new

tools and services had always been there. Thus, the solution should leverage the habits already

established by the user within the hosting environment and retrace the existing Gestalt principles-driven

patterns.

5.1.3 Brand emphasis and use of colours

Every SocialTruth product, website, brochure, application etc. should be consistent with the others and

recognizable as part of the SocialTruth environment, as part of an overall strategy of brand cultivation.

The SocialTruth’s Logo has already been established with an agreed-upon shape, font and colour (as

presented in Figure 20):

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 64 of 82

Figure 19 - Socialtruth Logo

Figure 20 - Socialtruth colours

In order to fulfil the afore-mentioned aspects of consistency and unity, the interface layout should contain

elements coherent with the logo style and colours, but with parsimony, since orange-like colours are

warm colours known to invoke warmth and comfort, but may to the contrary lead to anger and hostility

if used too much. Moreover, orange has been reported to be the most disliked colour by women (Hallock,

2003).

In any case, it is recommended that the hues of the logo are re-proposed and repeated in selected parts

of the interfaces (example: see SocialTruth website icons).

For the use of colours, in general, it is recommended to always take into consideration the colour

psychology applied to interface design, that is the logical and methodical approach to the use of colours

based on the psychological properties of each hue and on the combination of specific shades, tones and

tints that achieve a balance of good design and the desired psychological effect (A., 2009).

In any case, it is recommended that ADNkronos takes care of the management of colour- and brand-

related issues for the interface, since they have major expertise in the field of graphics and already

provided dissemination material for the project, including logo, brochures, flyers, website, social media

profiles etc.

5.2 Interface recommendations for use case 1
For the use case 1 “Checking sources in the production process”, the application will be an independent

application or a browser plugin. Based on updated pre-requirements described during plenary meeting in

Bydgoszcz, there is no need to integrate Socialtruth’s functionalities in the editorial software already used

by ADNKronos’ journalists, since the verification process happens before the journalists accesses it.

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 65 of 82

For this use case, it is mandatory that the whole interface is developed in the italian language, to assure

the major usability issues related to language barriers and in accordance to the language used within the

existing editorial software.

For the development of the HMI for this use case, the features reported in D2.1 Chapter 6 “Socio-technical

& Human Aspects” must be taken into consideration and translated into interface design affordances,

defined as actions that are made physically possible by the properties of an object or an environment

within the interface.

The features reported in D2.1 for this use case are the following (Backholm, et al., 2017) (Brandtzaeg,

Lüders, Spangenberg, Rath-Wiggins, & Følstad, 2016) (Schifferes, et al., 2014) (Schwartz, Naaman, &

Teodoro, 2015) (Diakopoulos, De Choudhury, & Naaman, 2012):

Table 4 - Major functions of a web-based online content validation toolset for journalists

Major functions of a web-based online content validation toolset for journalists

automatic

features

• identify the source and its trustworthiness

• find new trending content and developments within the already
identified content areas

manual tasks

• users or teams should be able to modify the tool settings according
to their needs, commonly mentioned settings include:
o basic search through search engines
o sorting functions (fresh, top, trending)
o filter functions (geolocation, language of content, timeframe

limitations, format – e.g. video only)

visualisation

of results

• visualisation tools used as a bridge between the automated
functions and the users, allowing to provide information focusing on
areas of interest relevant to the current assignment, including:
o summaries of how the content has been automatically

compared and cross-referenced
o visual chains of automatically identified steps between reposts

and the original source
o summaries of content listed according to the advanced search

parameters, such as geolocated posts placed on a map

technical

requirements

• tool functionality across screen sizes and equipment

• automatic and frequent updates of content feeds to enable rapid
inclusion of the latest information

• easily accessible content saving function in a format compatible with
existing publication formats

team-level
• the possibility to communicate within the toolset with colleagues, in

order to avoid unnecessary repetitions of tasks already carried out
by the other team members.

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 66 of 82

5.2.1 Content verification request input

The journalist should be able to give some input for the content verification request, such as an URL or

text or image or video, and receive a feedback from the system regarding type of content, source,

trustworthiness etc.

First of all, it is essential that the user is able to provide the input in the easiest possible way. Therefore,

the interface should allow the user to copy&paste the URL of the content or website, but also to

drag&drop it as presented in Figure 21:

Figure 21 - Search bar (1)

Immediately after giving input to the system and pressing “Enter” or the search icon, he or she should

receive a feedback from the system that the operation was successful (Figure 22):

Figure 22 - Search bar (2)

While the system collects data and information on the content, a pop up should show with a spinning

wheel or a progress bar to keep the user in the loop during the loading phase.

It is essential that the interface prevents the user from having to specify what type of content he or she is

giving as input to the system, meaning that the system has to automatically understand if the content is

a text, an image, a video, a tweet, a website, an article and so on, and provide adequate and differentiated

results for each type of content.

5.2.2 Content verification results

The system should allow the user to perform a content verification request on a certain piece of content.

For example, if the user gives a news article as input to the system, the system should be able to provide

information about the verification of the domain, text and image, including:

• the current ranking based on the verification algorithm;

• information about the URL domain (name, description, owner, location, reputation etc.)

• original author/ source of the text (name, date, location, etc.);

• results of the semantic and emotional analysis on the text (keywords, common lemmas, emotion,

style etc.);

• information on the image and indication about whether it is genuine, fabricated, tampered or

altered;

• original author/ source of the image (name, date, location etc.);

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 67 of 82

• a list of websites or social media posts where the news was shared after the original publication;

• optional: related images, visually similar images, videos with matching images.

Since the results to be displayed are many, the interface may for example be organized in blocks as

presented in Figure 23.

Figure 23 - Example of user interface for use case 1

Most of the provided information must be explorable, meaning that they must have a hyperlink that the

user can click to obtain more info. Also, it would be useful to have a sort of a summary of what the

hyperlink contains in terms of tooltips, in particular on names and sources:

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 68 of 82

Figure 24 - Tooltip visualisation

The default fields of search should be defined a priori by the system but should also be modifiable and

customizable by the user, based on his or her preferences, habits and needs. This may be achieved by

contemplating an “option” icon giving access to a control panel for the default search preferences (Figure

25).

Figure 25 - Interface options

Also, the system should allow the user to arrange blocks to a different order, expand or reduce them,

change the background, etc.

5.2.3 Search filters

The user should be able to select certain and specific areas of search. For example, if the user gives an

image as input to the system, he or she should be able to require a search only from a specific geographic

area or within a defined time window, thus applying filters to the search. Example is provided in Figure

26.

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 69 of 82

Figure 26 - Filters

 This is particularly important when searching for social media posts and reposts.

5.2.3.1. Geographic provenance

The user should also be able to visualise the results of the search highlighting the geographic provenance

of the online content publisher. For example, this may be useful when someone claims that is directly

witnessing a natural disaster somewhere, but is actually publishing the news from a different position, or

to the contrary when the journalist wants to read posts published by inhabitants of a place where a natural

disaster was claimed to be happening.

5.2.4 Content verification history (blockchain)

Figure 27 - Content verification history button

By clicking on the ranking button, the user should be able to visualize the verification history of the content

(stored in the blockchain) as presented in Figure 27, or eventually to write in the blockchain an update on

the trustworthiness of the content (as authorized user).

5.3 Interface recommendations for use case 2
For the use case no. 2 “Digital companion for content verification”, the application will be a web browser

plugin on the desktop side, and a smartphone/tablet application for on the mobile side.

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 70 of 82

For this use case, it is mandatory that the whole interface is developed in the romanian language, to

assure the major usability issues related to language barriers.

5.3.1 Target platforms

Based on the results of the statistical surveys conducted by StatCounter (StatCounter, s.d.) in the last year

(from February 2018 to February 2019), the total desktop vs. mobile vs. tablet market share in Europe and

Romania is presented in Graph 1.

Graph 1 - Desktop vs. mobile vs. tablet market share (February 2019, Europe and Romania)

The browser market share in Europe and Romania is shown in Graph 2.

Graph 2 - Desktop browser market share (February 2019, Europe and Romania)

56,47%

38,60%

4,93%

55,54%

42,71%

1,75%

0%

10%

20%

30%

40%

50%

60%

desktop mobile tablet

desktop vs mobile vs tablet market share (February 2019)

Europe

Romania

60,15%

17,28%

7,38%
3,96%

71,35%

8,67% 7,36%
4,70%

0%

10%

20%

30%

40%

50%

60%

70%

80%

Chrome Safari Firefox Samsung internet

desktop browser market share (February 2019)

Europe

Romania

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 71 of 82

Graph 3 presents the mobile OS market share in Europe and Romania.

Graph 3 - Mobile OS market share (February 2019, Europe and Romania)

Based on these data and percentages, it is recommended that the Socialtruth desktop application is

developed as a plugin or a search provider for Chrome and Safari at least, to cover 75-80% of the web

browser market share.

For the mobile application, the main target platform should be Android, to cover 70-80% of the mobile

OS market share.

5.3.2 Users attraction

The major issue about this use case is to assess why regular web users should want to install the

SocialTruth Digital Companion.

Based on the findings reported in D2.1 Chapter 6 “Socio-technical & Human Aspects”, half of the European

citizens say they come across fake news at least once a week and a large majority think that the existence

of fake news is a problem in their country and for democracy in general.

One of the main concerns of people regarding news and media was reported to be the uncertainty over

the truthfulness of the contents: 63% of the people world-wide agree that “the average person does not

know how to tell good journalism from rumour or falsehoods” and 59% agree that “it is becoming harder

to tell if a piece of news was produced by a respected media organisation”.

Given this encouraging data about the perception and awareness of people regarding content verification,

it is mandatory to assess what is the main psychologic mechanism that may drive people to search for and

install the SocialTruth application, and how to leverage that mechanism in order to foster the diffusion of

SocialTruth.

71,20%

27,69%

0,53% 0,33% 0,07% 0,04%

80,68%

18,26%

0,43% 0,36% 0,12% 0,06%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Android iOS Windows Samsung Linux Series 40

mobile OS market share (February 2019)

Europe

Romania

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 72 of 82

As stated in D2.1, the Uses and Gratifications (U&G) theory appears to be useful in attempting to explain

what social and psychological needs motivate audiences to select particular media channels and content

choices, as well as the subsequent attitudinal and behavioural effects. From the U&G perspective, with

regard to news reading, it is assumed that people actively choose among news sources owing to the

sources ability to gratify their different needs. As reported by Lee et al., the perceived gratifications of

online news appear to be entertainment, information search, peer acceptance, relationship maintenance,

socialising and self-status seeking.

Let us now deepen the meaning and consequences of the afore-mentioned data.

63% of the people world-wide agree that “the average person does not know how to tell good journalism

from rumour or falsehoods”. When saying so, the respondents reasonably put themselves in the fraction

of people who are better than average and can tell good journalism from rumour or falsehoods. Indeed,

people tend to have a high consideration of themselves (Alicke, Vredenburg, Hiatt, & Govorun, 2001).

Therefore, it is not recommended to leverage on the fact that they are not able to recognise hoaxes and

false news and that they need an application for helping them.

SocialTruth should to the contrary enphasise the problem of false news spread, the consequence of such

spread, and the importance of installing the SocialTruth application as part of the solution to the problem,

thus leveraging people’s self-enhancement, that is the of motivation that works to make people feel good

about themselves and to maintain self-esteem. They should feel that they are doing great, that they are

important, that they are contributing to solve a severe problem affecting society and threatening

democracy. Installing and using SocialTruth should induce in them the emotions of contentment and

satisfaction.

Also, the main motivational affordances investigated in D2.1 Chapter 6 should be taken into consideration,

namely:

The online environments allow users to keep up with friends, network with colleagues, and share their

• hypertextuality;

• multimediality;

• interactivity;

• portability;

• availability;

• locatability.

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 73 of 82

5.3.3 Content verification request input

The user should be able to give some input for the content verification request, such as an URL or text or

image or video, and receive a feedback from the system regarding type of content, source,

trustworthiness etc.

First of all, it is essential that the user is able to provide the input in the easiest possible way. Therefore,

the interface should allow the user to copy&paste the URL of the content or website, but also to

drag&drop as presented in Figure 28.

Figure 28 - Search bar (1)

Another possibility is to allow users to call the verification process by the right click menu on a link

within the browser (see Figure 29).

Figure 29 - Right-click menu

Immediately after giving input to the system and pressing “Enter” or the search icon, he or she should

receive a feedback from the system that the operation was successful:

Figure 30 - Search bar (2)

While the system collects data and information on the content, a pop up should show with a spinning

wheel or a progress bar to keep the user in the loop during the loading phase.

It is essential that the interface prevents the user from having to specify what type of content he or she is

giving as input to the system, meaning that the system has to automatically understand if the content is

a text, an image, a video, a tweet, a website, an article and so on, and provide adequate and differentiated

results for each type of content.

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 74 of 82

5.3.4 Content verification results

The system should allow the user to perform a content verification request on a certain piece of content.

With respect to the use case 1, the current use case requires more aggregated and summarized results.

Moreover, the key-point for this use case is to provide new and credible information regarding de-bunking

and fact-checking about the content. Giving the audience new and credible information is especially

effective in thoroughly unseating misinformation, since new information allows people to update their

understanding of events, justifying why they fell for the falsehood in the first place.

The search engine interface should be familiar and easy to use, looking just like a regular search engine.

Figure 31 present an example.

Figure 31 - Example of user interface for use case 2 (1)

If the user searches for some free text instead of an URL, the search results should be based on QWANT

search engine + ranking as presented in Figure 32.

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 75 of 82

Figure 32 - Example of user interface for use case 2 (2)

5.3.5 Automatic alert

An optional functionaity may be investigated, allowing users to set automatic alerts to pop up if the

encountering hoaxes online or visiting fraudulent websites.

5.3.6 Sharing

Based on the fact that people feel satisfied when they can share with friends, relatives and colleagues

what they believe is important, the SocialTruth application should allow user to share findings through

the social media (facebook, instagram, twitter) and also by e-mail.

The share could be in principle be based on the following: “Did you know this content is not trustable?”

(or similar).

5.4 Interface recommendations for use case 3
For the use case 3 “Search engine rankings & advertising prevention for fraudulent sites”, the application

will be embedded in the search engine result page, and the user interface in this case will mainly be an

icon communicating the level of trustworthiness of the content shown.

For this use case, it is mandatory that the whole interface is developed in the target geographic area(s)

language, to assure the major usability issues related to language barriers.

5.4.1 Colour-based rating

A colour-based rating method appears to be effective for this use-case.

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 76 of 82

Figure 33 shows the familiar RAG system is a popular method of rating for issues or status reports, based

on Red, Amber (yellow), and Green colours used in a traffic light rating system (Veromann)/

Figure 33 - RAG system

The choice of the RAG rating method is not the only one possible, other methods may be contemplated,

such as the RAG+B (Veromann) presented in Figure 34.

Figure 34 - RAG + B system

Here, the “super” category may contain ADNkronos, ANSA, REUTERS and other official/certified

international press agencies.

Also other combinations presented in Figure 35 may be considered.

Figure 35 - RAG + B + extra system

In any case, once the type of colour-based rating method is assessed, it could be easily implemented

within the existing QWANT search engine interface. A possible choice may be represented by the use of a

coloured icon strictly connected to the SocialTruth application, for example a section of the logo such as

the megaphone inside the balloon (Figure 36).

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 77 of 82

Figure 36 - Example of user interface for use case 3

This sort of solution may help making the SocialTruth’s brand (logo) easily recognisable, also in other

contexts, thus contributing to brand cultivation.

Based on the requirements defined in D2.1 and during the plenary meeting in Bydgoszcz, for this use case

QWANT does not need to provide additional information to its users regarding how the ranking was

computed. Nonetheless, when passing the mouse on the icon, a brief tooltip should appear stating what

the icon’s colour means, with an info icon containing a hyperlink, so that if the user wants to know more,

he or she can directly follow that link. Indeed, this functionality is mainly psychology-driven.

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 78 of 82

Figure 37 - Example of user interface for use case 3 with tooltip

The hyperlink should redirect the user to a web page containing an explanation of the rating result. If the

rating is low, the page should also provide information regarding the de-bunking and the fact-checking:

giving the audience some new and credible information is especially effective in thoroughly unseating

misinformation, since new information allows people to update their understanding of events, justifying

why they fell for the falsehood in the first place.

Also, by following further hyperlinks the user should be allowed to obtain information about the nature

and purposes of the SocialTruth project and instructions for installing the SocialTruth browser plugin

and/or mobile application developed for use case 2.

5.5 Interface recommendations for use case 4
For the use case 4 “External sources reliability check in the educational domain”, the application will be a

sort of add-on to the existing lesson plan maker platform “CreaLezioni”. Therefore, the look&feel of the

application will be mainly driven by the appearance of the existing software, in terms of buttons, tabs,

etc.

For this use case, it is mandatory that the whole interface is developed in the italian language, to assure

the major usability issues related to language barriers and in accordance to the language used within the

existing teaching-support software.

Based on the requirements defined in D2.1 and during the plenary meeting in Bydgoszcz, the Human-

Machine Interface for this use case will allow teachers to differentiate online contents based on its rank

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 79 of 82

of trustworthiness, similarly to use case 3 by QWANT, but in addition to this DeAgostini Scuola feels it is

necessary to provide users with an exhaustive, although aggregated/summarised, reasoning for the

computed ranking. This functionality would be especially needed when the SocialTruth tool is used for

pupils’ education about recognising trustworthy and not trustable online content.

The main targets for the content verification service are reported to be web pages and YouTube videos.

Regarding the videos, a good approach may be to provide the users with the results of the tampering

analysis, stating if the video is genuine, fabricated, altered etc. taking into consideration also the audio

part, and highlighting cases of re-dubbing or similar.

If possible, the user should be allowed to visualise the ranking reasoning in terms of a “story” or timeline,

preferably in the form of an infographic.

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 80 of 82

6 Conclusions
This document is the first release of the SocialTruth architecture design prepared in the early stage of the

project. It will be updated later in Month 15, including ADL description of the architecture and such

aspects as data adaptation models, big data management, annotation semantics, etc.

This report will help particular work packages and technology/components creators to follow the

architectural principles and guidelines as well as common understanding of the SocialTruth ecosystem. As

the input, we have used the requirements coming from D2.1 as well as the best practices and knowledge

of current technologies and architecture design principles.

This deliverable provides the analysis behind several choices that have to be made by the consortium. It

discusses the possible approaches to architecture and integration, such as options for ‘heavy service bus

(ESB)’ and microservices. The document also presents the possible cloud solutions that can be used for

SocialTruth deployment in a real environment. The consortium tends towards the use of microservices

and the private cloud deployment model.

The report also displays the modules and components of the platform, lists the needed functionalities,

discusses the interoperability aspects, as well as the security, privacy, social and human aspects.

7 References

A., W. (2009). The Colour Affects System of Colour Psychology. AIC Quadrennial Congress.

Alicke, M. D., Vredenburg, D. S., Hiatt, M., & Govorun, O. (2001). The "better than myself effect".

Motivation and Emotion, 25, 7-22.

Backholm, K., Ausserhofer, J., Frey, E., Grondhal Larsen, A., Hornmoen, H., Hogvag, J., & Reimerth, G.

(2017). Crises, Rumours and Reposts: Journalists' Social Media COntent Gathering and Verification

Practices in Breacking News Situations. Media and COmmunication, 5(2), 67-76.

Brandtzaeg, P. B., Lüders, M., Spangenberg, J., Rath-Wiggins, L., & Følstad, A. (2016). Emerging Journalistic

Verification Practices Concerning Social Media. Journalism Practice, 10(3), 323-342.

Demangeot, C., & Broderick, A. J. (2007). Conceptualising consumer behaviour in online shopping

environments. International Journal of Retail & Distribution Management, 35(11), 878-894.

Diakopoulos, N., De Choudhury, M., & Naaman, M. (2012). Finding and assessing soccial media

information sources in the context of journalism. Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems. Austin, TX.

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 81 of 82

Djamasbi, S., Siegel, M., & Tullis, T. (2011). Visual Hierarchy and Viewing Behavior: An Eye Tracking Study.

Human-Computer Interaction. Design and Development Approaches in Computer Science, 331-

340.

Elder, R. S., & Krishna, A. (2012). The “Visual Depiction Effect” in Advertising: Facilitating Embodied Mental

Simulation through Product Orientation. Journal of Consumer Research, 38(6), 988-1003.

Fadeyev, D. (n.d.). The Usability Post - Thoughts on design and user experience. Retrieved from

http://usabilitypost.com

Gorini M., C. V. (2013). EMERALD deliverable 'D2.3 - EMERALD System Functional Architecture'.

Hallock, J. (2003). Colour Assignment - Preferences and Associations.

Imtiaz, S. (2016). The Psychology Behind Web Design. McMaster University.

Lindgaard, G., Fernandes, G., Dudek, C., & Brown, J. (2006). Attention web designers: You have 50

milliseconds to make a good first impression! Behaviour & Information Technology, 25(2), 115-

126.

Schifferes, S., Newman, N., Thurman, N., Corney, D., Goker, A., & Martin, C. (2014). Identifying and

verifying news through social media: developing a user-centered tool for professional journalists.

Digital Journalism, 2(3), 406-418.

Schwartz, R., Naaman, M., & Teodoro, R. (2015). Editorial algorithms: using social media to discover and

report local news. Ninth International AAAI Conference on Web and Social Media. Oxford, UK.

Sillence, E., Briggs, P., Fishwick, L., & Harris, P. (2004). Trust and mistrust of online health sites. Proceedings

of the 2004 Conference on Human Factors in Computing Systems, 663-670.

StatCounter. (n.d.). Retrieved from http://gs.statcounter.com/

The Open Group. (n.d.). ArchiMate®, 2.1 specification. Retrieved December 2013, from The Open Group:

http://pubs.opengroup.org/architecture/archimate2-doc/

Tuch, A. N., Presslaber, E. E., Stöcklin, M., Opwis, K., & Bargas-Avila, J. A. (2012). The role of visual

complexity and prototypicality regarding first impression of websites: Working towards

understanding aesthetic judgments. International Journal of Human-Computer Studies, 70(11),

794-811.

Verhagen, T., Boter, J., & Adelaar, T. (2010). The Effect of Product Type on Consumer Preferences for

Website Content Elements: An Empirical Study. Journal of Computer-Mediated Communication,

16(1), 139-170.

Veromann, V.-J. (n.d.). RAG+B traffic light rating system – expanding established design patterns.

https://weekdone.com.

SocialTruth D2.2 Distributed System Architecture, Data Modelling and Interfaces

H2020-ICT-28-2018-825477 SocialTruth Project Page 82 of 82

Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M., Montesi, F., Mustafin, R., & Safina, L. (2017).

Microservices: yesterday, today, and tomorrow. In Present and ulterior software engineering (pp. 195-

216). Springer, Cham.

Dragoni, N., Lanese, I., Larsen, S. T., Mazzara, M., Mustafin, R., & Safina, L. (2017, June). Microservices:

How to make your application scale. In International Andrei Ershov Memorial Conference on Perspectives

of System Informatics (pp. 95-104). Springer, Cham.

https://medium.com/tech-tajawal/microservice-authentication-and-authorization-solutions-

e0e5e74b248a (accessed May 23, 2018).

https://medium.com/tech-tajawal/microservice-authentication-and-authorization-solutions-e0e5e74b248a
https://medium.com/tech-tajawal/microservice-authentication-and-authorization-solutions-e0e5e74b248a

